scholarly journals Hands-on Training and International Experience in Engineering Education

Author(s):  
Sanjeev Bedi ◽  
Ajayinder Singh Jawanda ◽  
Ajay Batish

The holistic training of an engineer includes hands-on experience and theoretical study. Engineering at the University of Waterloo (UW) is unique because of its co-op program, which exposes students to practice of engineering in industry, interwoven with academic terms in the university.This paper details conduct of International Industrial Training Programs for the students of UW. These programs conducted over the past five years have addressed both issues of hands-on training and internationalization of engineering education. These programs provide skills and training on use of tools and machines culminating in a design and build project experience. This paper emphasizes safety and security in planning and implementing the programs in a foreign country. It also discusses issues related to international travel and cultural challenges faced by students and organisers. It summarizes the gains for the engineering students from the program based on immersive international exposure to a foreign culture through personal interactions with locals and planned trips, industrial practices, study of preparatory engineering courses like machining, welding, foundry, wood working, properties of materials and computer aided design leading to student designed and built projects.Five decades ago, when the university was founded, the students came from a demographic, that was split between a majority from rural and small urban centers. The students had some experience with tools and machines at high school and at home, as cars were simpler and home repair was a common activity. This was especially so on farms and in rural environments. This has gradually shifted to the present day when students primarily come from large urban centers and are very competent in working with high-tech gadgetry like computers, communication devices and entertainment consoles. Conversely, nowadays most high school children are not exposed to working safely with tools and machines.Over time co-op jobs have also shifted from hands-on engineering and shop floor work, to softer jobs using computers for design, analysis and managerial tasks. This has increased the challenge of engineering education where the facilities for teaching hands-on skills in the university are deterred by the lack of time in the curriculum, shortage of equipment and trained instructors. The economic environment of our nation has also evolved from a national manufacturing based economy a few decades ago, to a global economy of today. Industries have gone global in their routine functions, requiring engineers to routinely work in collaborative work with functionaries of their industry in other countries, with different culture, language and skill sets. It has thus become vital for engineering education to adapt and introduce the students to aspects of global engineering environment in the curriculum.

Author(s):  
Majed Jarrar ◽  
Hanan Anis

Engineering schools are integrating entrepreneurship within their curriculum in order to equip their students with the capacity to adapt quickly to technological innovation. The University of Ottawa has developed an entrepreneurship course that is open to all engineering students, and aims to provide them with a hands-on approach to starting and growing a technology start-up. This paper is centred on assessing the students who took this course. The results of the survey analyze the impact entrepreneurship has had on their engineering skillset. This skillset reflects the graduate attributes that the Canadian Engineering Accreditation Board (CEAB) expects engineering students to develop. We will observe whether this impact has changed since the inception of this course in 2012 and throughout 5 course cycles. Using the survey results as well as the direct observation during those semesters, we present our analysis on how these outcomes can be replicated in other environments.


Author(s):  
Michael Kyte ◽  
Ahmed Abdel-Rahim ◽  
Melissa Lines

The development, implementation, and assessment of the traffic signal summer workshop (TSSW) are explored. An innovative educational prototype that has been conducted at the University of Idaho during the past two summers, TSSW addresses several critical issues, including the need to educate and train university engineering students in different ways, and the lack of adequately trained engineers and technicians prepared to design and manage today’s traffic signal infrastructure. Those issues are discussed along with the pedagogical basis for hands-on experiences in engineering education. Also discussed is how the university has responded, with the TSSW prototype, to the need to deliver transportation engineering education in a new way.


Author(s):  
A Gonzalez-Buelga ◽  
I Renaud-Assemat ◽  
B Selwyn ◽  
J Ross ◽  
I Lazar

This paper focuses on the development, delivery and preliminary impact analysis of an engineering Work Experience Week (WEW) programme for KS4 students in the School of Civil, Aerospace and Mechanical Engineering (CAME) at the University of Bristol, UK. Key stage 4, is the legal term for the two years of school education which incorporate GCSEs in England, age 15–16. The programme aims to promote the engineering profession among secondary school pupils. During the WEW, participants worked as engineering researchers: working in teams, they had to tackle a challenging engineering design problem. The experience included hands-on activities and the use of state-of-the-art rapid prototyping and advanced testing equipment. The students were supervised by a group of team leaders, a diverse group of undergraduate and postgraduate engineering students, technical staff, and academics at the School of CAME. The vision of the WEW programme is to transmit the message that everybody can be an engineer, that there are plenty of different routes into engineering that can be taken depending on pupils’ strengths and interests and that there are a vast amount of different engineering careers and challenges to be tackled by the engineers of the future. Feedback from the participants in the scheme has been overwhelmingly positive.


Author(s):  
Douglas V. Gallagher ◽  
Ronald A. L. Rorrer

At the University Colorado Denver, a manufacturing process design course was specifically created to raise the level of the as constructed senior design projects in the department. The manufacturing process design course creates a feed forward loop into the senior design course, while the senior design course generates a feedback loop into the process design course. Every student and student project has the opportunity to utilize CNC mills and lathes where appropriate. Specific emphasis is placed upon the interfaces from solid models to CAM models and subsequently the interface from CAM models to the machine tool. Often the construction of many senior design projects approaches the level of blacksmithing due to time constraints and lack of fabrication background. Obviously, most engineering students have neither the time nor the ability to become expert fabricators. However, the wide incorporation of CNC machining in the program allows, an opportunity to not only raise the quality of their prototypes, but also to immerse in the hands on experience of living with the ramifications of their own design decisions in manufacturing. Additionally, some of the art of fabrication is turned into the science of fabrication. The focus of this paper will be primarily on examining the effect of formal incorporation of the manufacturing process in the capstone design course.


Author(s):  
Giovanni Berselli ◽  
Pietro Bilancia ◽  
Luca Luzi

Abstract The use of integrated Computer Aided Design/Engineering (CAD/CAE) software capable of analyzing mechanical devices in a single parametric environment is becoming an industrial standard. Potential advantages over traditional enduring multi-software design routines can be outlined into time/cost reduction and easier modeling procedures. To meet industrial requirements, the engineering education is constantly revising the courses programs to include the training of modern advanced virtual prototyping technologies. Within this scenario, the present work describes the CAD/CAE project-based learning (PjBL) activity developed at the University of Genova as a part of course named Design of Automatic Machines, taught at the second level degree in mechanical engineering. The PjBL activity provides a detailed overview of an integrated design environment (i.e. PTC Creo). The students, divided into small work groups, interactively gain experience with the tool via the solution of an industrial design problem, provided by an engineer from industry. The considered case study consists of an automatic pushing device implemented in a commercial machine. Starting from a sub-optimal solution, the students, supervised by the lecturers, solve a series of sequential design steps involving both motion and structural analysis. The paper describes each design phase and summarizes the numerical outputs. At last, the results of the PjBL activity are presented and commented by considering the opinions of all the parties involved.


Author(s):  
J. Mikkelsen ◽  
A. Steeves ◽  
W. L. Cleghorn ◽  
P. Bastani ◽  
R. Pattani ◽  
...  

This paper describes efforts to develop a collaborative design project involving third year mechanical engineering students from the University of British Columbia (UBC) and the University of Toronto (U of T). Selected students enrolled in a core kinematics and dynamics course at U of T were partnered with selected students enrolled in a core machine design course at UBC. These project groups were given the task of designing an automotive product specified by the industrial client, General Motors. The pilot project required students make full use of the advanced design resources provided under the Partners for the Advancement of Collaborative Engineering Education (PACE) program. This pilot project was performed as a simulation of real world automotive design where design offices around the globe participate in concurrent design of new automobile components and systems.


Author(s):  
Marcia Friesen ◽  
Nadine Ibrahim ◽  
Grant McSorley ◽  
Stephen Mattucci

Industry engagement in undergraduate engineering education is a community-centred approach to learning that is hands-on and links the engineering theory to practice. This paper provides a review of existing Engineer-in-Residence (EIR) programs in Canada, including the University of Manitoba, Dalhousie University, University of Calgary, Ryerson University, University of Ottawa, and the University of Waterloo, as well as a brief international scan. We consider the motivations behind the institutions’ initiative to introduce EIR programs, different types of engagements, challenges, and opportunities. Programs are also examined externally relative to professional residency programs in business schools, among others, and relative to other forms of industry engagement in undergraduate engineering education. A brief overview of the history and role of EIRs within engineering programs is also presented. The paper will be of interest to those exploring a similar industry engagement framework at their institution, and offers a forward-looking perspective on ways to leverage the skills and experience of practicing engineers in preparing students to tackle the challenges of the future.


Author(s):  
Krishnil R. Ram ◽  
Roneel V. Sharan ◽  
Mohammed Rafiuddin Ahmed

Of late, there is a growing need for quality engineers who have the ability to solve complex engineering problems with reasonable knowledge of ethics and economics. This has led many universities to pursue accreditation by professional engineering bodies. While the accreditation process installs a standardized system of quality teaching, it is important that the engineering entrants have a degree of understanding that allows implementation of quality teaching methods. This study looks at the performance of first year engineering students in a bid to identify major issues that students face in a Bachelor of Engineering program. The learning of students in the School of Engineering and Physics at the University of the South Pacific is influenced by interactions of at least 12 different cultures from the 12 member countries of the university. The study looks at how students perform across cultures in the first year mechanical engineering courses, mainly engineering mechanics and engineering graphics & design. The general trend over the last five years shows that while the student numbers in the program have been increasing, student performance in one course seems to be improving but declining in the other; the two courses differ considerable in contents, required skill sets, and assessment methodologies. The study also presents possible reasons for the varied performance by considering issues such as cultural and academic backgrounds, use of teaching tools and resources, and revisions to the course and program and looks at how multi-cultural engineering education can be improved. The number of female students taking up engineering as their major is also looked at and positive trends are seen with female participation increasing from 7.6% in 2008 to 13.9% in 2013.


Author(s):  
Carol Hulls ◽  
Chris Rennick ◽  
Mary Robinson ◽  
William Melek ◽  
Sanjeev Bedi

In Mechatronics Engineering at the University of Waterloo, a joint project involving small, inexpensive fuel cells cars was introduced to show how courses in the first term relate to one another. Additionally, the project was designed to provide the students with hands on learning, to give the students a taste of what to expect in later years, and to start incorporating many of the CEAB's graduate attributes at an introductory level. The fuel cell car consists of two low-voltage cells, a low power microcontroller and several sensors mounted on a motorised platform. Students employed concepts from chemistry, programming and mechatronics systems throughout the project, submitting reports at key milestones. during the projet, students needed to make decision in a team environment on which strageties to implement to meet the goals of the project. The project culminated in a final competition and report. Students were surveyed at the start, and end, and the term to measure any changes in attitude with regards to the courses as well as their satisfaction with the project. The project was well recieved by students but significant challenges remain to be solved.


2021 ◽  
Vol 03 (03) ◽  
pp. 2150010
Author(s):  
Dayrius Tay ◽  
Tianyi Fu ◽  
Alexander Goo ◽  
Bernard Ricardo

As wireless communication carrier frequencies continually increase to respond to growing bandwidth demands, from hundreds of MHz (3G/4G) to dozens of GHz (5G), it would only be logical to postulate that the next step in this technological revolution would be to move to hundreds of THz, also known as visible light. This completely alleviates the carrier frequency induced bandwidth limitations while serving as ambient lighting. In this paper, a visible light communication setup capable of moderate bitrate serial communication with interference from ambient lighting will be presented. Furthermore, this paper proposes the implementation of a similar setup as a form of hands-on experiential learning for high school and undergraduate engineering students.


Sign in / Sign up

Export Citation Format

Share Document