Incorporation of Manufacturing Process Design Into the Senior Capstone Design Course

Author(s):  
Douglas V. Gallagher ◽  
Ronald A. L. Rorrer

At the University Colorado Denver, a manufacturing process design course was specifically created to raise the level of the as constructed senior design projects in the department. The manufacturing process design course creates a feed forward loop into the senior design course, while the senior design course generates a feedback loop into the process design course. Every student and student project has the opportunity to utilize CNC mills and lathes where appropriate. Specific emphasis is placed upon the interfaces from solid models to CAM models and subsequently the interface from CAM models to the machine tool. Often the construction of many senior design projects approaches the level of blacksmithing due to time constraints and lack of fabrication background. Obviously, most engineering students have neither the time nor the ability to become expert fabricators. However, the wide incorporation of CNC machining in the program allows, an opportunity to not only raise the quality of their prototypes, but also to immerse in the hands on experience of living with the ramifications of their own design decisions in manufacturing. Additionally, some of the art of fabrication is turned into the science of fabrication. The focus of this paper will be primarily on examining the effect of formal incorporation of the manufacturing process in the capstone design course.

Author(s):  
A Gonzalez-Buelga ◽  
I Renaud-Assemat ◽  
B Selwyn ◽  
J Ross ◽  
I Lazar

This paper focuses on the development, delivery and preliminary impact analysis of an engineering Work Experience Week (WEW) programme for KS4 students in the School of Civil, Aerospace and Mechanical Engineering (CAME) at the University of Bristol, UK. Key stage 4, is the legal term for the two years of school education which incorporate GCSEs in England, age 15–16. The programme aims to promote the engineering profession among secondary school pupils. During the WEW, participants worked as engineering researchers: working in teams, they had to tackle a challenging engineering design problem. The experience included hands-on activities and the use of state-of-the-art rapid prototyping and advanced testing equipment. The students were supervised by a group of team leaders, a diverse group of undergraduate and postgraduate engineering students, technical staff, and academics at the School of CAME. The vision of the WEW programme is to transmit the message that everybody can be an engineer, that there are plenty of different routes into engineering that can be taken depending on pupils’ strengths and interests and that there are a vast amount of different engineering careers and challenges to be tackled by the engineers of the future. Feedback from the participants in the scheme has been overwhelmingly positive.


Author(s):  
Vincent Chang

With a growing need to reform Chinese higher engineering education, University of Michigan—Shanghai Jiao Tong University Joint Institute (JI) initiated multinational corporation-sponsored industrial-strength Capstone Design Projects (CDP) in 2011. Since 2011, JI has developed 96 corporate-sponsored CDPs since its inception, which include multinational corporation sponsors such as Covidien, Dover, GE, HP, Intel, NI, Philips, and Siemens. Of these projects, healthcare accounts for 27%, energy 24%, internet technology (IT) 22%, electronics 16%, and other industries 11%. This portfolio reflects the trends and needs in the industry, which provides opportunities for engineering students to develop their careers. An accumulated 480 JI students have been teamed up based on their individual backgrounds, specifically electrical engineering, computer engineering, computer science, mechanical engineering, and biomedical engineering. The corporate-sponsored rate grew from 0% in 2010 to 86% in 2014.


1999 ◽  
Author(s):  
Alan W. Eberhardt ◽  
Laura K. Vogtle ◽  
Gary Edwards

Abstract This paper presents a review of two years experience regarding senior design projects to aid persons with disabilities, for mechanical engineering students at the University of Alabama at Birmingham (UAB). The efforts are funded by the National Science Foundation and are aimed at developing alternative, low cost, custom devices to aid specific disabled individuals or targeted groups. A collaboration has been established with UAB Occupational Therapy and United Cerebral Palsy of Birmingham (UCP), who have provided projects which combine depth in both engineering and life sciences. The “UAB experience” described in the following includes project selection, development, student advising and overall significance. Completed designs are listed, along with efforts to bring the products to a marketable level.


Author(s):  
Matthew W. Turner ◽  
Michael P.J. Benfield ◽  
Dawn R. Utley ◽  
Cynthia A. McPherson

The capstone senior design class in the Department of Mechanical and Aerospace Engineering at The University of Alabama in Huntsville (UAH) is taught as a distributed Integrated Product Team (IPT) experience. Engineering students are teamed with students of different disciplines within UAH and with students at universities in other states and Europe. Because of the distributed nature of these teams, the IPT students must use a variety of technologies to communicate. The authors of this chapter found that the students prefer familiar, informal, contemporary forms of communication, including Google Groups/Sites, Skype, instant messaging, e-mail, phone calls, and text messaging for team communication and project management, and reject more formalized forms of communication, even if advanced features are offered. Most importantly, the authors found that the effectiveness of all forms of technology based communication tools is greatly enhanced when the students have the opportunity to personally meet prior to the design semester.


Author(s):  
Clinton Lanier ◽  
William S. Janna ◽  
John I. Hochstein

An innovative capstone design course titled “Design of Fluid Thermal Systems,” involves groups of seniors working on various semester-long design projects. Groups are composed of 3 or 4 members that bid competitively on various projects. Once projects are awarded, freshmen enrolled in the “Introduction to Mechanical Engineering” course are assigned to work with the senior design teams. The senior teams (Engineering Consulting Companies) function like small consulting companies that employ co-operative education students; e.g., the freshmen. In Fall 2006, the Engineering Consulting Companies also worked with students enrolled in a Technical Editing (TE) course—“Writing and Editing in the Professions”—within the English Department. The TE students would be given reports or instructional manuals that the Mechanical Engineering (ME) students had to write as part of their capstone project, and the resulting editing of their documents would be done by these TE students. Subsequently, the ME students were given a survey and asked to comment on this experience. In addition, the TE students were also surveyed and asked to comment as well. It was concluded that the collaboration should continue for at least one more cycle, and that the TE students were more favorably inclined toward this collaboration than were the engineering students.


Author(s):  
Nazmul Islam

Most of the engineering courses focus more on theory and very little on hands-on, project-based learning in the classroom. Integration of real-world engineering problems and applications in lower division engineering courses will produce engineering students, who will be technically sound and be able to execute and manage real-world projects, when they will do senior design projects in their final year of engineering study. To overcome the engineering design challenges we have developed iHOP (Ingenieŕia Hands on Project) and integrate it with our lower division engineering courses. iHOP has been developed to emphasis the design component at the University of Texas at Brownsville (UTB) Engineering Physics curriculum and the project is now an integral part of Introduction to Engineering class. The iHOP project is one that is challenging, fun, requires teamwork, associated with the engineering material being studied, low cost, and doable in a limited amount of time. The experience from iHOP project motivates our freshman students to choose a better senior design project in senior year of their college career. The objectives of the iHOP projects are — to have students develop teamwork skills, and to teach students basic engineering design concepts in a complementary format to the traditional lecture. Various techniques related to team selection, encouraging teamwork, incorporation of engineering topics, keeping costs down, project results presentations, and gathering feedback from students will also be presented in this paper. Integrating iHOP Project with Introduction to Engineering class helped us to improve our retention effort in the engineering department.


Author(s):  
Barry Hyman ◽  
Sanjeev Khanna ◽  
Yuyi Lin ◽  
Jim Borgford-Parnell

This paper describes an NSF funded project in the Mechanical and Aerospace Engineering (MAE) Department at the University of Missouri. A primary goal of this project is to systematically increase project-based learning (PBL) experiences throughout the MAE curriculum. To accomplish this goal, recent capstone design projects that need further refinements serve as the basis for PBL activities throughout the MAE curriculum. A major tool for facilitating these refinement efforts is a new senior/graduate Design Management course in which each student in this course learns how to plan and manage design projects. These students then implement their learning by serving as project team managers in the courses in which the refinement activities are being conducted. This paper provides a detailed case study of five refinements to one capstone design that took place in four different MAE courses during the Spring 2011 semester. The paper describes a Fall 2009 capstone project that consisted of designing a portable wood chipper. The student design was very promising, leading to a chipper with significantly greater chipping capacity than commercially available chippers of the same size and weight. However, several faculty members reviewed the results and identified additional opportunities for refining the design. This paper describes activities during Spring 2011 when students in four different MAE courses developed refinements to the original design. The roles of the Design Management students in these activities are discussed. The paper also includes a discussion of the methods and findings of the formative assessment process, including interviews with, and surveys of, faculty and students.


Author(s):  
Daria Kotys-Schwartz ◽  
Daniel Knight ◽  
Gary Pawlas

Innovative curriculum reforms have been instituted at several universities and colleges with the intention of developing the technical competence and professional skills of engineering students. First Year Engineering Project (FYEP), or Freshman Design courses have been integrated into undergraduate engineering curricula across the country. Many of these courses provide students with hands-on engineering opportunities early in the curriculum. Senior Capstone Design (SCD) courses are ubiquitous in engineering programs, incorporating technical knowledge and real-world problem solving. Previous research has shown that project-driven classes like FYEP and SCD increase the professional and technical design skills of students. While research into first year and senior design skills development has been more robust, scant research investigating the transformation of skills between freshman design experiences and senior design experiences has been performed. This research project investigates the longitudinal technical and professional skill development of mechanical engineering students at the University of Colorado at Boulder. An overview of First-Year Engineering Projects and the mechanical engineering Senior Capstone Design project course is detailed. Technical and professional skill objectives are discussed within the paper. Pre and post skill surveys were utilized in both First-Year Engineering Projects and the Senior Capstone Design classes. Initial results indicate that student skills deteriorate between the end of the first-year and beginning of the senior year.


Author(s):  
Chris Rennick ◽  
Eugene Li

The capstone design project is ubiquitous in engineering programs worldwide, and is seen by students as the single most important activity in their undergraduate careers. Staff and faculty at the University of Waterloo identified three issues with the current capstone process: students are unaware of industrial suppliers, they lack multi-disciplinary exposure, and they often struggle to identify "good" needs for their projects. The Engineering IDEAs Clinic, with support from instructors and staff from across Engineering, developed a conference for students to address these issues. EngCon – aimed at students in third/fourth year – brought students together with their peers from other programs, instructors from across the Faculty, and representatives from suppliers (both external industry, and internal support units) with the goal of improving their capstone projects. This paper presents the design and implementation of EngCon in both 2017 and 2018 with lessons learned from offering a large coordinated set of workshops aimed at students as they enter their capstone design projects.  


Sign in / Sign up

Export Citation Format

Share Document