scholarly journals THE PATH FROM FUNCTIONAL TO DETAILED DESIGN OF A CONING ROTOR WIND TURBINE CONCEPT

Author(s):  
Curran A. Crawford

This paper provides a brief overview of functional design theory, which is then used to examine choices in wind turbine design. Definition of function is used to examine fundamental design choices in engineering a machine to capture energy from the wind. Specifically, rationalization is presented for a coning rotor wind turbine concept, potentially able to greatly reduce the cost of wind energy. The work presented here has provided a theoretical basis in design theory to motivate the development of specialized analysis tools and more detailed analysis of the concept.

Author(s):  
Abdollah A. Afjeh ◽  
◽  
Brett Andersen ◽  
Jin Woo Lee ◽  
Mahdi Norouzi ◽  
...  

Development of novel offshore wind turbine designs and technologies are necessary to reduce the cost of offshore wind energy since offshore wind turbines need to withstand ice and waves in addition to wind, a markedly different environment from their onshore counterparts. This paper focuses on major design challenges of offshore wind turbines and offers an advanced concept wind turbine that can significantly reduce the cost of offshore wind energy as an alternative to the current popular designs. The design consists of a two-blade, downwind rotor configuration fitted to a fixed bottom or floating foundation. Preliminary results indicate that cost savings of nearly 25% are possible compared with the conventional upwind wind turbine designs.


Author(s):  
S. Schreck ◽  
M. Robinson

To further reduce the cost of wind energy, future turbine designs will continue to migrate toward lighter and more flexible structures. Thus, the accuracy and reliability of aerodynamic load prediction has become a primary consideration in turbine design codes. Dynamically stalled flows routinely generated during yawed operation are powerful and potentially destructive, as well as complex and difficult to model. As a prerequisite to aerodynamics model improvements, wind turbine dynamic stall must be characterized in detail and thoroughly understood. In the current study, turbine blade surface pressure data and local inflow data acquired by the NREL Unsteady Aerodynamics Experiment during the NASA Ames wind tunnel experiment were analyzed. The dynamically stalled, vortex dominated flow field responded in systematic fashion to variations in wind speed, turbine yaw angle, and radial location, forming the basis for more thorough comprehension of wind turbine dynamic stall and improved modeling.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 138
Author(s):  
Mohamed Osman Awaleh ◽  
Abdi-Basid Adan ◽  
Omar Assowe Dabar ◽  
Mohamed Jalludin ◽  
Moussa Mahdi Ahmed ◽  
...  

The Republic of Djibouti has untapped potential in terms of renewable energy resources, such as geothermal, wind, and solar energy. This study examines the economic feasibility of green hydrogen production by water electrolysis using wind and geothermal energy resources in the Asal–Ghoubbet Rift (AG Rift), Republic of Djibouti. It is the first study in Africa that compares the cost per kg of green hydrogen produced by wind and geothermal energy from a single site. The unit cost of electricity produced by the wind turbine (0.042 $/kWh) is more competitive than that of a dry steam geothermal plant (0.086 $/kWh). The cost of producing hydrogen with a suitable electrolyzer powered by wind energy ranges from $0.672/kg H2 to $1.063/kg H2, while that produced by the high-temperature electrolyzer (HTE) powered by geothermal energy ranges from $3.31/kg H2 to $4.78/kg H2. Thus, the AG Rift area can produce electricity and green hydrogen at low-cost using wind energy compared to geothermal energy. The amount of carbon dioxide (CO2) emissions reduced by using a “Yinhe GX113-2.5MW” wind turbine and a single flash geothermal power plant instead of fuel-oil generators is 2061.6 tons CO2/MW/year and 2184.8 tons CO2/MW/year, respectively.


2021 ◽  
Author(s):  
Nayanathara Widyalankara ◽  
Nilanga P Jayawickrama ◽  
Dilshan Ambegoda ◽  
V. Logeeshan

2014 ◽  
Vol 571-572 ◽  
pp. 1083-1086
Author(s):  
Qiu Yun Mo ◽  
Fei Deng ◽  
Shuai Shuai Li ◽  
Ke Yan Zhang

Multidisciplinary design optimization (MDO) represents the development direction of complex products design theory and method, it shows a huge advantage in solving complex optimization problems in engineering applications, for example product design. This paper briefly analyzes some existing problems of small vertical wind turbine, and puts forward using the theory of MDO in small vertical wind turbine structural optimization. Then,the paper analyzes and points out the key technology of using MDO theory to optimize small vertical wind turbine, and provides a new train of thought for further in-depth study of small vertical wind turbine to improve the overall performance of the small vertical wind turbine products.


2005 ◽  
Vol 127 (4) ◽  
pp. 488-495 ◽  
Author(s):  
S. Schreck ◽  
M. Robinson

To further reduce the cost of wind energy, future turbine designs will continue to migrate toward lighter and more flexible structures. Thus, the accuracy and reliability of aerodynamic load prediction has become a primary consideration in turbine design codes. Dynamically stalled flows routinely generated during yawed operation are powerful and potentially destructive, as well as complex and difficult to model. As a prerequisite to aerodynamics model improvements, wind turbine dynamic stall must be characterized in detail and thoroughly understood. The current study analyzed turbine blade surface pressure data and local inflow data acquired by the NREL Unsteady Aerodynamics Experiment during the NASA Ames wind tunnel experiment. Analyses identified and characterized two key dynamic stall processes, vortex initiation and vortex convection, across a broad parameter range. Results showed that both initiation and convection exhibited pronounced three-dimensional kinematics, which responded in systematic fashion to variations in wind speed, turbine yaw angle, and radial location.


Author(s):  
Michael Zeamer ◽  
Matthew Zeamer ◽  
R. S. Amano ◽  
Pradeep Mohan Mohan Das ◽  
Andrew Welsh ◽  
...  

A wind energy has getting more attention due to its free-source, its nature of renewable energy, and free of carbon dioxide emission. As the wind map varies area to area, the wind energy collection strongly depends on the site. In order to maximize the amount of energy captured, an improved, low airspeed wind turbines are demanded to be designed. A wind turbine studied was created using the NACA 4412 foil shape and a decreasing chord length with increasing distance from the center of the turbine. The pitch was also varied along the span of the blade. The blade was analyzed using CFD and tested in a wind tunnel facility. The turbine was connected to a motor which was connected to a resistor and current and voltage meters. Using the voltage and current data at a prescribed rate of rotation, the model generated decent power output. The study focused mostly for a low-speed wind up to 2m/s (or 3.4 mph). For practical use the turbine would need to be scaled to a greater size and a proportional-integral-derivative controller (PID controller) that can generate higher resistance would need to be employed.


2021 ◽  
Vol 61 (2) ◽  
pp. 342-349
Author(s):  
Csaba Hetyei ◽  
Ferenc Szlivka

General energy demand is continuously increasing, thus the energy generating assets need to be optimised for higher efficiency. Wind turbines are no exception. Their maximum efficiency can be determined on a theoretical basis. The limit is approached by researches day by day, utilizing the latest developments in airfoil design, blade structure and new and improved ideas in conventional and unconventional wind turbine layouts. In this paper, we are reviewing the conventional and unconventional wind turbines and their place in smart cities. Then, an unconventional wind turbine design, the CO-DRWT (counter-rotating dual rotor wind turbine) is analysed with a CFD (computational fluid dynamics) code, varying the axial and radial distances between the two turbines. After the simulations, the power coefficients for the different turbine configurations is calculated. At the end of this paper, the simulations results are summarized and consequences are drawn for the CO-DRWT layouts.


Author(s):  
Bart Blockmans ◽  
Jan Helsen ◽  
Frederik Vanhollebeke ◽  
Wim Desmet

High turbine reliability is of utmost importance to keep the cost of wind energy to a minimum. A considerable problem in this regard is that of premature drivetrain failures, which have plagued the wind turbine industry since its inception. Accurate prediction of the loads encountered by the drivetrain components during their lifetime is essential for reliable wind turbine design. Of particular interest are transient load events, which are expected to have a detrimental effect on the lifetime of drivetrain components, especially when they give rise to torque reversals. At the electrical side of the wind turbine, transient events worth investigating include grid faults, emergency stops and grid loss. Unlike previous research on the impact of these events, which typically uses simplified gearbox representations, this paper investigates the dynamic behavior of wind turbine drivetrains during grid faults using a coupled simulation of a flexible multibody model of a commercial multimegawatt wind turbine drivetrain and a Simulink model of a doubly fed induction generator (DFIG) and its controller. The mathematical modeling of the DFIG as well as the flexible multibody modeling of the drivetrain are described. Both gear and bearing forces on several components of the gearbox are examined during a symmetrical and asymmetrical voltage dip, and the influence of gearbox flexibility on these loads is assessed.


Sign in / Sign up

Export Citation Format

Share Document