scholarly journals STUDENT’S PERSPECTIVE ON IMPROVEMENTS FOR SECOND YEAR AND OTHER UNDERGRADUATE ENGINEERING DESIGN COURSES

Author(s):  
Fiona Serack

Students and educators should work together on pushing the boundaries of expectation - "expect more to get more" - so that design courses can become increasingly effective and greater potential can be achieved. I encourage instructors and educators to consider the fact that this generation of engineering students enter university with a multitude of experiences and skills in design, decision making and communication that past generations did not have – and taking advantage of that advanced starting point will greatly improve the caliber of the course offerings. As an engineering undergraduate student at Queen’s University, I have been exposed to several engineering design courses. Starting in the 2011-2012 academic year when I was in my second year, a course referred to as APSC 200/293 was introduced. I will be critically discussing my experiences both positive and negative with this design course, as well as the first year design course, and in my opinion how they can be improved. Information and feedback regarding the design courses was obtained from the faculty and compared to my observations. Starting the design courses early on in the students’ careers gives them an excellent introduction to the real world of engineering. However, there is great room for improvement in courses of this sort, which can be assisted by utilizing the opinions of willing students. I will further discuss these courses, their downfalls and advantages, and where improvements could be made to promote the success of students.

Author(s):  
Umar Iqbal ◽  
Deena Salem ◽  
David Strong

The objective of this paper is to document the experience of developing and implementing a second-year course in an engineering professional spine that was developed in a first-tier research university and relies on project-based core courses. The main objective of this spine is to develop the students’ cognitive and employability skills that will allow them to stand out from the crowd of other engineering graduates.The spine was developed and delivered for the first time in the academic year 2010-2011 for first-year general engineering students. In the year 2011-2012, those students joined different programs, and accordingly the second-year course was tailored to align with the different programs’ learning outcomes. This paper discusses the development and implementation of the course in the Electrical and Computer Engineering (ECE) department.


Author(s):  
Brian Frank ◽  
David Strong ◽  
Rick Sellens

This paper discusses the development of a four-year Engineering Design and Practice Sequence (EDPS) of project-based courses at Queen’s University. The four-year sequence is a core requirement for all engineering students, and will develop competence in design process methods and tools, problem analysis, creativity, economics and entrepreneurship, engineering communications, professionalism, and ethics. The EDPS was designed to meet requirements of the Canadian Engineering Accreditation Board graduate attributes , which addresses requirements of the Washington Accord. They also target applicable elements of the CDIO syllabus. The EDPS is being delivered to first year engineering students for the first time in the 2010-2011 academic year and will continue rolling out over the next three years. The paper discusses the process involved in creating the sequence, the course objectives and delivery for each year of the program, and proposed assessment and evaluation methods. The sequence will also be compared to previously published engineering design and practice sequences. The outcomes of the first year, including student feedback and attribute assessment, will also be discussed. Upper year students who will not experience the engineering design and practice sequence are being assessed on their understanding of design methods to provide baseline data for comparison with students who progress through the sequence in future years.This paper was also published in the ASEE 2011 Annual General Conference with joint permission of ASEE and CEEA.


Author(s):  
Danny D Mann ◽  
Kris J Dick ◽  
Sandra A Ingram

In previous years, several improvements to the teaching of engineering design were made by staff in the Department of Biosystems Engineering at The University of Manitoba. The first innovation occurred when a trilogy of courses spanning the final three years of the program was introduced as a replacement for a single capstone course in the final year of the program. In its original conception, engineering students were to get three opportunities to be involved in design problems originating from industry, with greater expectations with each subsequent experience. A second innovation occurred when technical communication was formally integrated within the trilogy of design courses. This innovation has helped engineering students realize the value of professional communication skills in collaborating with each other and in preparing reports and presentations for an industry client. A third innovation occurred three years ago when the decision was made to allow students to participate in the prototyping of their designs. The so-called “Design Trilogy” now consists of a single course (Design Trilogy I) taken during the second year of the engineering program (which builds upon the first-year design experience with the requirement of a conceptual solution in response to a design problem provided by industry) and two courses taken during the final year of the program. Students are required to have a design completed on paper by the completion of Design Trilogy II and fabrication of the prototype occurs during Design Trilogy III. The student experience in the Design Trilogy, with particular emphasis on curriculum innovations in Design Trilogy III, will be discussed.


2021 ◽  
pp. 251512742110292
Author(s):  
Darby R. Riley ◽  
Hayley M. Shuster ◽  
Courtney A. LeMasney ◽  
Carla E. Silvestri ◽  
Kaitlin E. Mallouk

This study was conducted to examine how first-year engineering students conceptualize the Entrepreneurial Mindset (EM) and how that conceptualization changes over the course of their first semester of college, using the Kern Entrepreneurial Engineering Network (KEEN)’s 3Cs as a starting point. Students enrolled in an introductory, multidisciplinary design course responded to biweekly reflection prompts on their educational experiences (either in high school or as a first-year college student) and related this experience to one of the 3Cs of EM: Curiosity, Connections, or Creating Value. Results indicate that students’ conceptualization of the 3Cs often align with definitions of EM from KEEN, as well as foundational works in the entrepreneurship field, and that their interpretation of each of the 3Cs does change during their first semester in college. For instance, students were less likely to write about curiosity and more likely to write about creating value at the end of the semester compared to the beginning.


1999 ◽  
Vol 11 (4) ◽  
pp. 218-228 ◽  
Author(s):  
Michael J. Scott ◽  
Erik K. Antonsson

Author(s):  
Xianping Du ◽  
Onur Bilgen ◽  
Hongyi Xu

Abstract Machine learning for classification has been used widely in engineering design, for example, feasible domain recognition and hidden pattern discovery. Training an accurate machine learning model requires a large dataset; however, high computational or experimental costs are major issues in obtaining a large dataset for real-world problems. One possible solution is to generate a large pseudo dataset with surrogate models, which is established with a smaller set of real training data. However, it is not well understood whether the pseudo dataset can benefit the classification model by providing more information or deteriorates the machine learning performance due to the prediction errors and uncertainties introduced by the surrogate model. This paper presents a preliminary investigation towards this research question. A classification-and-regressiontree model is employed to recognize the design subspaces to support design decision-making. It is implemented on the geometric design of a vehicle energy-absorbing structure based on finite element simulations. Based on a small set of real-world data obtained by simulations, a surrogate model based on Gaussian process regression is employed to generate pseudo datasets for training. The results showed that the tree-based method could help recognize feasible design domains efficiently. Furthermore, the additional information provided by the surrogate model enhances the accuracy of classification. One important conclusion is that the accuracy of the surrogate model determines the quality of the pseudo dataset and hence, the improvements in the machine learning model.


Author(s):  
Eniko T. Enikov ◽  
Zoltán Szabó ◽  
Rein Anton ◽  
Jesse Skoch ◽  
Whitney Sheen

The objective of this National Science Foundation (NSF)-funded undergraduate engineering training project is to introduce nanoscale science and engineering through an innovative use of a technical elective sophomore-level mechatronics course, followed by an Accreditation Board for Engineering and Technology (ABET)-mandated senior-level engineering capstone design project. A unique partnership between University of Arizona’s department of surgery, its neurosurgical division, and the College of Engineering presents a creative environment, where medical residents serve as mentors for undergraduate engineering students in developing product ideas enabled by nanotechnology. Examples include: a smart ventricular peritoneal (VP) shunt with flow-sensing; a bio-resorbable inflatable stent for drug delivery, and a hand-held non-invasive eye tonometer. Results from the first year of the student projects, as well as qualitative assessment of their experience, is presented. Several institutional challenges were also identified.


Sign in / Sign up

Export Citation Format

Share Document