scholarly journals WHO YOU ARE AND HOW YOU WORK: EMBEDDING POSITIONALITY IN ENGINEERING DESIGN

Author(s):  
Noosheen Walji ◽  
Patricia K. Sheridan ◽  
Penny Kinnear ◽  
Robert Irish ◽  
Jason Foster

As the Engineering profession increasingly explores the complex relationships between technology and society, the responsibility of engineers is evolving to include considering the socio-technical complexities in which their technology will be embedded [1]. This evolution has led to interest in teaching empathy and reflexivity in undergraduate engineering education, in part to prepare student engineers for effective community engagement in their engineering practice [2] [3].  This practice paper discusses considerations, approaches, and theories that informed our design practice as we incorporated positionality into our course. Positionality was introduced as a foundational design tool to approximately 300 students in a first-year design course at a large, public, research-intensive university. In this work we discuss the integration of positionality as a framework to facilitate self-awareness, intentionality, leadership, reflexivity, and empathy in individual and team engineering design activities.

Author(s):  
Scott Sciffer ◽  
Mahsood Shah

The University of Newcastle, Australia has a long history of providing enabling education which provides access and opportunity for students to participate in undergraduate education. The enabling programs at the University allow higher school leavers, and mature aged adults to prepare for undergraduate degrees. Students who complete enabling education at the University undertake undergraduate studies in various disciplines including engineering. This paper outlines the extent to which enabling programs have played an important role in widening the participation of disadvantaged students in engineering disciplines. The different levels of academic preparedness of students in enabling programs and barriers faced in learning require effective strategies for teaching and engaging students in learning. The paper outlines the strategy used in teaching an advanced level of mathematics to the diverse groups of students to prepare them for success in first year undergraduate engineering programs. While research on undergraduate engineering education is significant, limited studies have been undertaken on enabling or university preparatory programs and their impact in various professions.


2020 ◽  
Author(s):  
Anggi Cecilia Safaningrum

Numerous studies in the last two decades have attempted to explain the significant relationship between effects of freehand sketching especially in the initial phase of idea generation in engineering design process approach. However, freehand sketches are not favoured by novice designer while generating design task. This paper aim to map how sketching skills benefit STEM-enriched learning environment and enabling visually communicated ideas to craft novelty solutions. This systematic review analysed nine papers that use sketch as design tool in STEM enriched engineering design activities. The literature is retrieved from established online database such as SCOPUS and EBSCOHOST. Sketch significantly proves as powerful tool in prompting visual ideas, reflect prior knowledge, aid communication and collaborative practise and engage active learning. The infancy of research using matured student sample, different ethnic and social economic background will create interesting research opportunities in multiracial nation.


Author(s):  
Denis Proulx

According to the Canadian Engineering Accreditation Board, all engineering programs in Canada must include a minimum of 15% of activities allocated to design. One can assume that these activities vary in content and scope between different programs. In this context, how can we define engineering design? Is there a recognized academic definition? Should our design goals be aligned with industrial needs and practice and if so, what should be the content of our design activities and how should they be structured? How is it possible to reach academic design goals given the limited resources available in our engineering schools? These are some of questions that will be addressed in this paper with the intent of better understanding the very important aspect of design’s engineering practice. Additional topics include: the change in design philosophy and approach resulting from a major program reform in the Mechanical Engineering Department at Université de Sherbrooke as well as the importance of industrial partnerships in design projects.


Author(s):  
Mohammad Alsager Alzayed ◽  
Scarlett R. Miller ◽  
Jessica Menold ◽  
Jacquelyn Huff ◽  
Christopher McComb

Abstract Research on empathy has been surging in popularity in the engineering design community since empathy is known to help designers develop a deeper understanding of the users’ needs. Because of this, the design community has been invested in devising and assessing empathic design activities. However, research on empathy has been primarily limited to individuals, meaning we do not know how it impacts team performance, particularly in the concept generation and selection stages of the design process. Specifically, it is unknown how the empathic composition of teams, average (elevation) and standard deviation (diversity) of team members’ empathy, would impact design outcomes in the concept generation and selection stages of the design process. Therefore, the goal of the current study was to investigate the impact of team trait empathy on concept generation and selection in an engineering design student project. This was accomplished through a computational simulation of 13,482 teams of noninteracting brainstorming individuals generated by a statistical bootstrapping technique drawing upon a design repository of 806 ideas generated by first-year engineering students. The main findings from the study indicate that the elevation in team empathy positively impacted simulated teams’ unique idea generation and selection while the diversity in team empathy positively impacted teams’ generation of useful ideas. The results from this study can be used to guide team formation in engineering design.


Author(s):  
Jennifer Howcroft ◽  
Igor Ivkovic ◽  
Matthew J. Borland ◽  
Maud Gorbet

Engineering design is a critical skill that all engineering students are expected to learn and is often the focus of final year capstone projects and first-year cornerstone projects. In the Systems Design Engineering Department at the University of Waterloo, engineering design is introduced to the students during an intense two-day Design Days Boot Camp. Design Days was originally conceived of and run in Fall 2016. The Fall 2018 version, Design Days 2.0, included substantial improvements focused on adding two additional design activities and a writing activity, strengthening the connection with first year content, and providing a greater variety of team experiences. The methods of achieving the nine intended learning outcomes of Design Days 2.0 are discussed and connected to CEAB graduate attributes. This demonstrates that meaningful learning can be achieved during a two-day boot camp that will starts students on the path towards professional engineering. Other departments are encouraged to use the presented intended learning outcomes, graduate attributes connections, and Design Days 2.0 descriptions as a template for their own design boot camp. Finally, Design Days 2.0 inspired ideas for further improvements including the incorporation of a software-focused design activity, adding budgetary constraints, and providing an opportunity for student reflection.


Author(s):  
Abhijit Nagchaudhuri ◽  
Emin Yilmaz

Statics, Dynamics, and Mechanics of Materials form the basic sequence of engineering mechanics courses in engineering curricula. Traditionally, these courses have been designated as “engineering science” courses with significantly more emphasis in analysis to reinforce engineering fundamentals, and little to no importance to “engineering design”. With the outcome based approach to undergraduate engineering education adopted by Accreditation Board of Engineering and Technology and the framework laid out by Engineering Criteria (EC 2000) significant reform efforts are underway to incorporate design experience throughout the engineering curricula. Most engineering programs across the nation have developed and implemented a freshman design course to introduce engineering design at the beginning of the college experience for engineering majors. To sustain the momentum, it therefore follows that subsequent courses should sustain the design emphasis in the freshman and sophomore years. Design, however, is a time consuming complex iterative process somewhat different from the convergent nature of engineering science. Modern software tools provide a time efficient and pedagogically effective way of integrating engineering design project with the engineering mechanics sequence without compromising the engineering science fundamentals. In this paper design projects that have been integrated in Statics, Dynamics, and Mechanics of Material courses offered by the author using software tools such as Working Model, MD-Solids, Pro-Engineer, Solid-works etc. supplemented by computational tools such as MATLAB and EXCEL are outlined. Discussion based on student feedback and relevance to ABET outcomes is also forwarded.


Sign in / Sign up

Export Citation Format

Share Document