scholarly journals A Systematic Review on Sketching Engineering Design in STEM Classroom

2020 ◽  
Author(s):  
Anggi Cecilia Safaningrum

Numerous studies in the last two decades have attempted to explain the significant relationship between effects of freehand sketching especially in the initial phase of idea generation in engineering design process approach. However, freehand sketches are not favoured by novice designer while generating design task. This paper aim to map how sketching skills benefit STEM-enriched learning environment and enabling visually communicated ideas to craft novelty solutions. This systematic review analysed nine papers that use sketch as design tool in STEM enriched engineering design activities. The literature is retrieved from established online database such as SCOPUS and EBSCOHOST. Sketch significantly proves as powerful tool in prompting visual ideas, reflect prior knowledge, aid communication and collaborative practise and engage active learning. The infancy of research using matured student sample, different ethnic and social economic background will create interesting research opportunities in multiracial nation.

Eng ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 112-121
Author(s):  
Yu-Hung Chien ◽  
Chun-Kai Yao ◽  
Yu-Han Chao

This study took the ergonomics design course as an example to propose a design teaching model of multidisciplinary participatory design (MPD), and investigated the effects of this teaching model on the engineering design behavior of college students. We used lag behavior sequential analysis to compare the design behaviors of three student groups: a participatory design (PD) experimental group, an MPD experimental group, and a control group. The results of the study show that (1) students in the PD experimental group had 13 significant sequential engineering design behaviors, students in the MPD experimental group had 10, and students in the control group had only seven. The engineering design behaviors of the experimental groups were more diversified than those of the control group. (2) The three groups of students had a small number of significant design behavior transfers in the engineering design process, indicating that the students’ sequential design behaviors between two different design activities were insufficient. We concluded by detailing the pros and cons of using the MPD teaching model based on the results of this study, and hopefully by providing a reference for teaching engineering design.


Author(s):  
Remon Pop-Iliev ◽  
Scott Nokleby ◽  
George Platanitis

Since 2005, with the endowment of the NSERC-GMCL Chair in Innovative Design Engineering at UOIT, and the Laptop-based, web-centric teaching approach, an ideal setting for the creation, prompt adoption, and implementation of advanced and innovative practices in teaching design engineering have been implemented, in addition to the use of traditional methods. A pilot program was recently completed to evaluate the use of Tablets in an engineering course. Tablets are currently used by faculty for teaching purposes at UOIT, but the program aims to integrate the use of Tablets within courses in the engineering design curriculum, namely for using CAD/CAM/CAE software. As CAD software capabilities improve, greater memory and computer speed is required, making the currently used conventional Laptops less useful for engineering design. In addition, Laptops do not lend themselves to graphical, free-form idea generation. It is intended that Tablets, with improved memory and processing speed, will facilitate CAD software usage, and hence, improve and enhance the overall design learning and application experience. Also, students can take advantage of software such as Microsoft OneNote to create preliminary sketches of designs and improve record-keeping of decisions during team meetings. In this pilot program, Tablet computers were issued to students and instruction personnel in a fourth-year Advanced Mechatronics course at UOIT. In this context, students were able to more efficiently carry out design assignments for term design projects, and students and instructors were able to evaluate the benefits of using Tablets. Overall, it was determined that Tablets were better as an engineering design tool compared to traditional Laptops.


Author(s):  
Mohammad Alsager Alzayed ◽  
Scarlett R. Miller ◽  
Jessica Menold ◽  
Jacquelyn Huff ◽  
Christopher McComb

Abstract Research on empathy has been surging in popularity in the engineering design community since empathy is known to help designers develop a deeper understanding of the users’ needs. Because of this, the design community has been invested in devising and assessing empathic design activities. However, research on empathy has been primarily limited to individuals, meaning we do not know how it impacts team performance, particularly in the concept generation and selection stages of the design process. Specifically, it is unknown how the empathic composition of teams, average (elevation) and standard deviation (diversity) of team members’ empathy, would impact design outcomes in the concept generation and selection stages of the design process. Therefore, the goal of the current study was to investigate the impact of team trait empathy on concept generation and selection in an engineering design student project. This was accomplished through a computational simulation of 13,482 teams of noninteracting brainstorming individuals generated by a statistical bootstrapping technique drawing upon a design repository of 806 ideas generated by first-year engineering students. The main findings from the study indicate that the elevation in team empathy positively impacted simulated teams’ unique idea generation and selection while the diversity in team empathy positively impacted teams’ generation of useful ideas. The results from this study can be used to guide team formation in engineering design.


Author(s):  
Jacquelyn K. S. Nagel ◽  
Robert B. Stone ◽  
Daniel A. McAdams

Engineering design is considered a creative field that involves many activities with the end goal of a new product that fulfills a purpose. Utilization of systematic methods or tools that aid in the design process is recognized as standard practice in industry and academia. The tools are used for a number of design activities (i.e., idea generation, concept generation, inspiration searches, functional modeling) and can span across engineering disciplines, the sciences (i.e., biology, chemistry) or a non-engineering domain (i.e., medicine), with an overall focus of encouraging creative engineering designs. Engineers, however, have struggled with utilizing the vast amount of biological information available from the natural world around them. Often it is because there is a knowledge gap or terminology is difficult, and the time needed to learn and understand the biology is not feasible. This paper presents an engineering-to-biology thesaurus, which we propose affords engineers, with limited biological background, a tool for leveraging nature’s ingenuity during many steps of the design process. Additionally, the tool could also increase the probability of designing biologically-inspired engineering solutions. Biological terms in the thesaurus are correlated to the engineering domain through pairing with a synonymous function or flow term of the Functional Basis lexicon, which supports functional modeling and abstract representation of any functioning system. The second version of the thesaurus presented in this paper represents an integration of three independent research efforts, which include research from Oregon State University, the University of Toronto, and the Indian Institute of Science, and their industrial partners. The overall approach for term integration and the final results are presented. Applications to the areas of design inspiration, comprehension of biological information, functional modeling, creative design and concept generation are discussed. An example of comprehension and functional modeling are presented.


2021 ◽  
Vol 7 ◽  
Author(s):  
Hannah Nolte ◽  
Christopher McComb

Abstract The engineering design process can produce stress that endures even after it has been completed. This may be particularly true for students who engage with the process as novices. However, it is not known how individual components of the design process induce stress in designers. This study explored the cognitive experience of introductory engineering design students during concept generation, concept selection and physical modelling to identify stress signatures for these three design activities. Data were collected for the design activities using pre- and post-task surveys. Each design activity produced distinct markers of cognitive experience and a unique stress signature that was stable across design activity themes. Rankings of perceived sources of stress also differed for each design activity. Students, however, did not perceive any physiological changes due to the stress of design for any of the design activities. Findings indicate that physical modelling was the most stressful for students, followed by concept generation and then concept selection. Additionally, recommendations for instructors of introductory engineering design courses were provided to help them apply the results of this study. Better understanding of the cognitive experience of students during design can support instructors as they learn to better teach design.


Author(s):  
Katie Heininger ◽  
Hong-En Chen ◽  
Kathryn Jablokow ◽  
Scarlett R. Miller

The flow of creative ideas throughout the engineering design process is essential for innovation. However, few studies have examined how individual traits affect problem-solving behaviors in an engineering design setting. Understanding these behaviors will enable us to guide individuals during the idea generation and concept screening phases of the engineering design process and help support the flow of creative ideas through this process. As a first step towards understanding these behaviors, we conducted an exploratory study with 19 undergraduate engineering students to examine the impact of individual traits, using the Preferences for Creativity Scale (PCS) and Kirton’s Adaption-Innovation inventory (KAI), on the creativity of the ideas generated and selected for an engineering design task. The ideas were rated for their creativity, quality, and originality using Amabile’s consensual assessment technique. Our results show that the PCS was able to predict students’ propensity for creative concept screening, accounting for 74% of the variation in the model. Specifically, team centrality and influence and risk tolerance significantly contributed to the model. However, PCS was unable to predict idea generation abilities. On the other hand, cognitive style, as measured by KAI, predicted the generation of creative and original ideas, as well as one’s propensity for quality concept screening, although the effect sizes were small. Our results provide insights into individual factors impacting undergraduate engineering students’ idea generation and selection.


Author(s):  
Noosheen Walji ◽  
Patricia K. Sheridan ◽  
Penny Kinnear ◽  
Robert Irish ◽  
Jason Foster

As the Engineering profession increasingly explores the complex relationships between technology and society, the responsibility of engineers is evolving to include considering the socio-technical complexities in which their technology will be embedded [1]. This evolution has led to interest in teaching empathy and reflexivity in undergraduate engineering education, in part to prepare student engineers for effective community engagement in their engineering practice [2] [3].  This practice paper discusses considerations, approaches, and theories that informed our design practice as we incorporated positionality into our course. Positionality was introduced as a foundational design tool to approximately 300 students in a first-year design course at a large, public, research-intensive university. In this work we discuss the integration of positionality as a framework to facilitate self-awareness, intentionality, leadership, reflexivity, and empathy in individual and team engineering design activities.


Author(s):  
Andrew Olewnik ◽  
Kemper Lewis

The House of Quality is a popular tool that supports information processing and decision making in the engineering design process. While its application is an aid in conceptual aspects of the design process, its use as a quantitative decision support tool in engineering design is potentially flawed. This flaw is a result of assumptions behind the methodology of the House of Quality and is viewed as an important deficiency that can lead to potentially invalid and poor decisions. In this paper this deficiency and its implications are explored both experimentally and empirically. The resulting conclusions are important to future use and improvement of the House of Quality as an engineering design tool.


2019 ◽  
Vol 5 ◽  
Author(s):  
Marco Bertoni ◽  
Alessandro Bertoni

Value models are increasingly discussed today as a means to frontload conceptual design activities in engineering design, with the final goal of reducing cost and rework associated with sub-optimal decisions made from a system perspective. However, there is no shared agreement in the research community about what a value model exactly is, how many types of value models are there, their input–output relationships and their usage along the engineering design process timeline. Emerging from five case studies conducted in the aerospace and in the construction equipment industry, this paper describes how to tailor the development of value models in the engineering design process. The initial descriptive study findings are summarized in the form of seven lessons learned that shall be taken into account when designing value models for design decision support. From these lessons, the paper proposes a six-step framework that considers the need to update the nature and definition of value models as far as new information becomes available, moving from initial estimations based on expert judgment to detailed quantitative analysis.


2006 ◽  
Vol 129 (7) ◽  
pp. 662-667 ◽  
Author(s):  
Reid Bailey

While prior work indicates that seniors near the end of their capstone design course know more about design than first-year students, it is unclear where this knowledge is gained. We study two possible sources of seniors’ greater design knowledge: coursework during sophomore and junior years and industrial experience. The design process knowledge of seniors at the beginning of their capstone class was assessed and information about their industrial experience obtained. These data were compared to assessment data of first-year students at the end of an introduction to engineering design course. The results indicate that industrial experience greatly increases students’ recognition that documentation needs to occur throughout the design process. Seniors with industrial experience, however, are less aware that idea generation is an important part of design and are less able to allot time to different design activities than first-year students at the end of a hands-on introduction to engineering design course. For the remaining four aspects of design process knowledge assessed—namely, identifying the requirements for a project at the project’s outset, making decisions with a systematic process based on analysis, building and testing prototypes and final designs, and the overall layout of design including iteration—no differences are found between seniors with industrial experience and first-year students at the end of an introduction to engineering design course. One explanation for why industrial experience does not impact student’s design process knowledge positively in more areas than documentation is that students on internships only experience a small portion of a design process. Due to this “snapshot” experience, either (1) students are not able to learn a significant amount about the bigger picture design concepts or (2) students each learn about different aspects of design but, as a population, do not show any significant increase in design process knowledge. The one activity that all interns will experience is the necessity to document their work. Furthermore, seniors without industrial experience scored no differently than first-year students on any single aspect of design process knowledge measured. This indicates that analysis-heavy sophomore and junior classes do not impact design process knowledge.


Sign in / Sign up

Export Citation Format

Share Document