scholarly journals Blood coagulation factor concentrate (von Willebrand factor, fibrinogen, factor XIII)

2009 ◽  
Vol 20 (1) ◽  
pp. 3-5 ◽  
Author(s):  
Takashi SUZUKI
1992 ◽  
Vol 2 (1) ◽  
pp. 10-14 ◽  
Author(s):  
M. Weller ◽  
P. Esser ◽  
M. Bresgen ◽  
K. Heimann ◽  
P. Wiedemann

Thrombospondin (TSP), an adhesive integrin-binding protein of plasma and platelets, was detected in preretinal traction membranes from patients with idiopathic (8/8) and traumatic (7/8) proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR) (6/8). TSP immunoreactivity was compared to the pattern of von Willebrand factor, plasma transglutaminase (blood coagulation factor XIII), fibronectin, and mononuclear phagocytes, using double-label immunoflurorescence microscopy. TSP was partially colocalised with the endothelial cell marker, von Willebrand factor, in PDR. The codistribution of catalytic factor XIII and two cross-linking substrates, fibronectin and TSP, suggests a functional role of the enzyme in the extracellular matrix build-up in PVR and PDR. No significant TSP synthesis by mononuclear phagocytes was observed. Western blotting indicated a plasmin-mediated intravitreal breakdown of presumably plasmatic TSP in PVR and PDR.


2002 ◽  
Vol 88 (09) ◽  
pp. 380-386 ◽  
Author(s):  
Dawn Sands ◽  
Andrew Chang ◽  
Claudine Mazurier ◽  
Anthony Hubbard

SummaryAn international study involving 26 laboratories assayed two candidate von Willebrand Factor (VWF) concentrates (B and C) for VWF:Antigen (VWF:Ag), VWF:Ristocetin Cofactor (VWF:RCo) and VWF:Collagen binding (VWF:CB) relative to the 4th International Standard Factor VIII/VWF Plasma (4th IS Plasma) (97/586). Estimates of VWF:Ag showed good agreement between different methods, for both candidates, and the overall combined means were 11.01 IU/ml with inter-laboratory variability (GCV) of 10.9% for candidate B and 14.01 IU/ml (GCV 11.8%) for candidate C. Estimates of VWF:RCo showed no significant difference between methods for both candidates and gave overall means of 9.38 IU/ml (GCV 23.7%) for candidate B and 10.19 IU/ml (GCV 24.4%) for candidate C. Prior to the calibration of the candidates for VWF:CB it was necessary to calibrate the 4th IS Plasma relative to local frozen normal plasma pools; there was good agreement between different collagen reagents and an overall mean of 0.83 IU per ampoule (GCV 11.8%) was assigned. In contrast, estimates of VWF:CB in both candidates showed large differences between collagen reagents with inter-laboratory GCV’s of 40%. Candidate B (00/514) was established as the 1st International Standard von Willebrand Factor Concentrate by the WHO Expert Committee on Biological Standardisation in November 2001 with assigned values for VWF:Ag (11.0 IU/ampoule) and VWF:RCo (9.4 IU/ampoule). Large inter-laboratory variability of estimates precluded the assignment of a value for VWF:CB.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 1-1
Author(s):  
Amber Federizo

Inherited platelet disorders are recognized as an important cause of mild to severe bleeding in both children and adults. Patients with platelet disorders may present with mucocutaneous bleeding, gastrointestinal bleeding, menorrhagia, postsurgical, and/or excessive bleeding from traumatic injury. Delta storage pool deficiencies (delta-SPD) are among the most frequent platelet disorders, characterized by dysfunctional dense platelet granules. Bernard Soulier syndrome (BSS) is an autosomal recessive platelet disorder caused by mutations in various polypeptides in the GpIb/IX/V complex, which is the principal receptor for von Willebrand factor (VWF). Treatment of platelet disorders is mainly supportive. Normal hemostasis requires VWF and factor VIII (FVIII) to support platelet adhesion and aggregation at sites of vascular injury. von Willebrand factor is a large multimeric glycoprotein present in human plasma as a series of polymers called multimers. Molecular weights for multimers ranges from 500 kDa for the dimer to over 10,000 kDa for the high molecular weight multimers (HMWM) forming the largest known protein present in human plasma. Each multimeric subunit of VWF has binding sites for the receptor GpIb on nonactivated platelets and the receptor GpIIb/IIIa to facilitate platelet adhesion and platelet aggregation, respectively, making the VWF HMWM important for normal platelet function. Desmopressin (DDAVP), which is known to stimulate the release of VWF and FVIII, is commonly used for treatment of platelet disorders. Potentiation of platelet aggregation at high shear rate may be one mechanism by which DDAVP shortens the prolonged bleeding time of patients with congenital platelet defects. For severe bleeding, platelet transfusion may be required, but patients may develop isoantibodies, rendering this therapy ineffective. For this reason, it may be prudent to reserve platelet transfusion in this patient population for emergent situations, such as trauma. Other patients and/or clinical situations may require recombinant active factor VII (rFVIIa), but this therapy is very costly and not always effective and/or available. Antifibrinolytics may also be used but are not always effective. In four (4) patients with platelet disorders (delta-SPD [n=3]; BSS [n=1]), common supportive therapies were not effective, tolerable, and/or available. It was postulated that off-label infusions of a cost-effective von Willebrand factor/coagulation factor VIII (VWF/FVIII) complex (Wilate, Octapharma SA) might be of benefit in these refractory patients (Table 1). The mechanism of action of DDAVP treatment efficacy relies on the release of existing, stored, functional VWF. In refractory patients with suboptimal VWF functionality, it was reasoned that infusion of exogenous, functional VWF and FVIII could potentially encourage platelet adhesion and aggregation. All refractory patients studied were treated successfully with the VWF/FVIII complex with positive clinical outcomes. As mentioned, the adhesive activity of VWF depends on the size of its multimers, and HMWM are the most effective in supporting interaction with collagen and platelet receptors and in facilitating wound healing under conditions of shear stress in the human vascular system. The VWF/FVIII complex utilized in these patients is known to have minimal amounts of the plasma metalloproteinase ADAMTS13. The HMWM of VWF are, under normal conditions, cleaved by ADAMTS13 to smaller, less adhesive multimers. During the manufacturing process, if the ADAMTS13 is not filtered out of the product almost entirely, the VWF in the vial may become highly proteolyzed. Therefore, a reduction or lack of HMWM resulting from inclusion of ADAMTS13 in the manufactured product is believed to reduce product functionality. Multimeric analysis of the VWF/FVIII complex has shown that it exhibits a physiological triplet structure which resembles normal plasma. In addition, the product has a high safety profile and tolerability as protein impurities are eliminated in the manufacturing process. In summary, the use of a VWF/FVIII complex in four (4) patients with inherited platelet disorders, who were refractory to conventional treatments, provided beneficial, cost-effective clinical outcomes with resolution of bleeding. Disclosures Federizo: Octapharma: Consultancy, Honoraria, Other: Publication support, Speakers Bureau; Sanofi: Consultancy, Honoraria, Research Funding, Speakers Bureau; American Thrombosis and Hemostasis Netowrk: Research Funding; Aptevo: Consultancy, Speakers Bureau; National Hemophilia Foundation: Consultancy, Honoraria. OffLabel Disclosure: von Willebrand/FVIII concentrate is currently approved for the treatment of Hemophilia A and von Willebrand. This abstract will review the off-label use of this medication in the treatment of inherited platelet dysfunction.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 96 ◽  
Author(s):  
Karl C Desch

Von Willebrand factor (VWF) is a multimeric plasma glycoprotein that plays a central role in the initiation of blood coagulation. Through interactions between its specific functional domains, the vascular wall, coagulation factor VIII, and platelet receptors, VWF maintains hemostasis by binding to platelets and delivering factor VIII to the sites of vascular injury. In the healthy human population, plasma VWF levels vary widely. The important role of VWF is illustrated by individuals at the extremes of the normal distribution of plasma VWF concentrations where individuals with low VWF levels are more likely to present with mucocutaneous bleeding. Conversely, people with high VWF levels are at higher risk for venous thromboembolic disease, stroke, and coronary artery disease. This report will summarize recent advances in our understanding of environmental influences and the genetic control of VWF plasma variation in healthy and symptomatic populations and will also highlight the unanswered questions that are currently driving this field of study.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. SCI-8-SCI-8 ◽  
Author(s):  
Peter J Lenting ◽  
Vincent Muczynski ◽  
Gabriel Aymé ◽  
Cecile V. Denis ◽  
Olivier D. Christophe

Abstract Coagulation factor VIII (FVIII) and von Willebrand factor (VWF) both play a centrol role in hemostasis, illustrated by the severe bleeding disorders associated with their functional absence. Despite their different functionalities in hemostasis and being products from two different genes, both proteins circulate in a tight, non-covalently linked complex. The physiological concequences of complex formation are many, including stabilization of FVIII heterodimeric structure, protection of FVIII from protelytic degradation, and modulation of FVIII immunogenicity. Another relevant issue relates to the chaperone function of VWF, allowing FVIII to survive in the circulation. FVIII levels are markedly reduced in patients with no detectable VWF protein or with a defect in VWF-FVIII complex formation, indicating that VWF prevents FVIII from premature clearance. Moreover, evidence points to FVIII actually being predominantly cleared as part of the VWF-FVIII complex rather than as a separate protein. First, it is possible to predict FVIII half-life fairly accurately by knowing antigen levels of VWF and its propeptide in combination with blood group. Second, when FVIII and VWF are co-injected in Vwf-deficient mice, FVIII is targeted to the same macrophages as is VWF. Since the end of the 1990s, our knowledge on the clearance mechanism of FVIII and VWF has started to emerge, and multiple clearance receptors for both proteins have now been identified. Interestingly, there exists a large overlap in receptor-repertoire between FVIII and VWF. These findings have taught us that it will be difficult to design single-mutant FVIII or VWF variants that have prolonged half-lives. How then to prolong the half-life of FVIII to improve treatment of hemophilia A? Several novel bioengineered FVIII variants have been developed, including PEGylation, Fc fusion and single-chain design, aiming to increase FVIII half-life. These approaches have so far achieved only moderate increases in half-life (1.5- to 2-fold compared to marketed FVIII products), significantly less than when similar modifications are being applied to factor IX. Indeed, it seems as if in designing these FVIII variants, the role of the significant other in the complex has been overlooked, since FVIII clearance is principally determined by VWF. Could we instead use VWF as a tool to prolong half-life of FVIII? This option is actually limited by the nature of the interaction between VWF and FVIII. Although of high affinity, the interaction is characterized by high association- and dissociation-rates. Infusing FVIII in combination with long-acting VWF variants will therefore result in a rapid redistribution of FVIII to endogenous VWF, as has elegantly been shown by the group of Ginsburg. To overcome this limitation, we have designed a FVIII variant (FVIII-KB013bv) in which we have replaced the B-domain by a single-domain, llama-derived antibody fragment (nanobody) that recognizes the D'D3-region of VWF. Consequently, the dissociation-rate of the VWF/FVIII complex is reduced 100-fold. Preliminary studies revealed that FVIII-KB013bv has a two-fold prolonged half-life compared to FVIII, likely due to improved VWF binding properties. Combination of the FVIII-nanobody fusion protein with long-acting VWF variants is anticipated to prolong its half-life well beyond the limit of the current long-acting FVIII variants. Disclosures Lenting: NovoNordisk: Consultancy, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document