scholarly journals Role of leukocyte derived elastase in vascular endothelial cell injury.

Ensho ◽  
1993 ◽  
Vol 13 (2) ◽  
pp. 139-144
Author(s):  
Hiroshi Fujita
2010 ◽  
Vol 48 (1) ◽  
pp. 120-127 ◽  
Author(s):  
Takaaki Yamada ◽  
Nobuaki Egashira ◽  
Maiko Imuta ◽  
Takahisa Yano ◽  
Yui Yamauchi ◽  
...  

2018 ◽  
Vol 59 (1) ◽  
pp. 56-64 ◽  
Author(s):  
Srabani Mitra ◽  
Matthew Exline ◽  
Fabien Habyarimana ◽  
Mikhail A. Gavrilin ◽  
Paul J. Baker ◽  
...  

2019 ◽  
Vol 316 (1) ◽  
pp. C104-C110 ◽  
Author(s):  
Xuhui Hou ◽  
Songbai Yang ◽  
Jian Yin

The aim of the present study was to investigate the potential role of regulated in development and DNA damage response 1 (REDD1) in LPS-induced vascular endothelial injury by using human umbilical vein endothelial cells (HUVECs). We observed that REDD1 expression was apparently elevated in HUVECs after exposure to LPS. Additionally, elimination of REDD1 strikingly attenuated the secretion of the proinflammatory cytokines TNF-α, IL-6, IL-1β, and monocyte chemotactic protein-1 and the endothelial cell adhesion markers ICAM-1 and VCAM-1 that was induced by LPS stimulation. Subsequently, knockdown of REDD1 augmented cell viability but ameliorated lactate dehydrogenase release in HUVECs stimulated with LPS. Meanwhile, depletion of REDD1 effectively restricted LPS-induced HUVEC apoptosis, as exemplified by reduced DNA fragmentation, and it also elevated antiapoptotic Bcl-2 protein, concomitant with reduced levels of proapoptotic proteins Bax and cleaved caspase-3. Furthermore, repression of REDD1 remarkably alleviated LPS-triggered intracellular reactive oxygen species generation accompanied by decreased malondialdehyde content and increased the activity of the endogenous antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase. Most important, depletion of REDD1 protected HUVECs against inflammation-mediated apoptosis and oxidative damage partly through thioredoxin-interacting protein (TXNIP). Collectively, these findings indicate that blocking the REDD1/TXNIP axis repressed the inflammation-mediated vascular injury process, which may be closely related to oxidative stress and apoptosis in HUVECs, implying that the REDD1/TXNIP axis may be a new target for preventing the endothelial cell injury process.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Lei Yi ◽  
Zengding Zhou ◽  
Yijuan Zheng ◽  
Mengling Chang ◽  
Xiaoqin Huang ◽  
...  

Background. Under septic conditions, LPS induced lung vascular endothelial cell (EC) injury, and the release of inflammatory mediator launches and aggravates acute lung injury (ALI). There are no effective therapeutic options for ALI. Genistein-3′-sodium sulfonate (GSS) is a derivative of native soy isoflavone, which exhibits neuroprotective effects via its antiapoptosis property. However, whether GSS protect against sepsis-induced EC injury and release of inflammatory mediators has not been determined. In this study, we found that GSS not only downregulated the levels of TNF-α and IL-6 in the lung and serum of mice in vivo but also inhibited the expression and secretion of TNF-α and IL-6 in ECs. Importantly, we also found that GSS blocked LPS-induced TNF-α and IL-6 expression in ECs via the Myd88/NF-κB signaling pathway. Taken together, our results demonstrated that GSS might be a promising candidate for sepsis-induced ALI via its regulating effects on inflammatory response in lung ECs.


Sign in / Sign up

Export Citation Format

Share Document