scholarly journals SUSTAINABLE AND RESILIENT COASTAL CITIES: TRIGGER TO ENHANCE NATURE-BASED SOLUTIONS TO CLIMATE CHANGE/SEA LEVEL RISE – THE BELGIAN CASE

Author(s):  
PATRICK DE KLERCK ◽  
NEIL HOSKINS
2021 ◽  
Vol 9 ◽  
Author(s):  
John W. Day ◽  
Joel D. Gunn ◽  
Joseph Robert Burger

The world is urbanizing most rapidly in tropical to sub-temperate areas and in coastal zones. Climate change along with other global change forcings will diminish the opportunities for sustainability of cities, especially in coastal areas in low-income countries. Climate forcings include global temperature and heatwave increases that are expanding the equatorial tropical belt, sea-level rise, an increase in the frequency of the most intense tropical cyclones, both increases and decreases in freshwater inputs to coastal zones, and increasingly severe extreme precipitation events, droughts, freshwater shortages, heat waves, and wildfires. Current climate impacts are already strongly influencing natural and human systems. Because of proximity to several key warming variables such as sea-level rise and increasing frequency and intensity of heatwaves, coastal cities are a leading indicator of what may occur worldwide. Climate change alone will diminish the sustainability and resilience of coastal cities, especially in the tropical-subtropical belt, but combined with other global changes, this suite of forcings represents an existential threat, especially for coastal cities. Urbanization has coincided with orders of magnitude increases in per capita GDP, energy use and greenhouse gas emissions, which in turn has led to unprecedented demand for natural resources and degradation of natural systems and more expensive infrastructure to sustain the flows of these resources. Most resources to fuel cities are extracted from ex-urban areas far away from their point of final use. The urban transition over the last 200 years is a hallmark of the Anthropocene coinciding with large surges in use of energy, principally fossil fuels, population, consumption and economic growth, and environmental impacts such as natural system degradation and climate change. Fossil energy enabled and underwrote Anthropocene origins and fueled the dramatic expansion of modern urban systems. It will be difficult for renewable energy and other non-fossil energy sources to ramp up fast enough to fuel further urban growth and maintenance and reverse climate change all the while minimizing further environmental degradation. Given these trajectories, the future sustainability of cities and urbanization trends, especially in threatened areas like coastal zones in low-income countries in the tropical to sub-tropical belt, will likely diminish. Adaptation to climate change may be limited and challenging to implement, especially for low-income countries.


2021 ◽  
Vol 21 (6) ◽  
pp. 303-311
Author(s):  
Dong Jun Kim ◽  
Kyung Min Choi ◽  
Yang Ho Song ◽  
Jung Ho Lee

The rise in average sea level due to climate change aggravates the vulnerability of coastal areas, increasing the likelihood of flooding due to erosion of outfall to the coast and rivers. Therefore, the design standards of defense facilities should be strengthened to address such increased risk of flooding. Accordingly, in this study, a plan to adjust the disaster prevention performance target rainfall for two research areas was selected in consideration of the regional characteristics of the coastal area and the average sea level rise predicted for 2050, and the disaster prevention performance target rainfall increased from at least 89% to up to 169%. Based on these results, it is believed that this study can serve as a basis for improving data on rainfall targets for disaster prevention performance with consideration of future sea level rise in coastal cities.


2018 ◽  
Author(s):  
Emanuela Molinaroli ◽  
Stefano Guerzoni ◽  
Daniel Suman

Both Venice and Miami are highly vulnerable to sea level rise and climate change. We examine the two cities´ biophysical environments, their socioeconomic bases, the legal and administrative structures, and their vulnerabilities and responses to sea level rise and flooding. Based on this information we critically compare the different adaptive responses of Venice and Miami and suggest what each city may learn from the other, as well as offer lessons for other vulnerable coastal cities.


2020 ◽  
Vol 20 (6) ◽  
pp. 323-332
Author(s):  
Yoonkyung Park ◽  
Byungsoon Jung ◽  
Reeho Kim

The purpose of this study was to present disaster prevention performance targets for Korean coastal cities, given the rise in sea level due to climate change. The disaster prevention performance targets for coastal cities are used to assess flood risk caused by increased sea levels. The proposed disaster prevention performance targets give additional consideration for design tide level or design flood level, which are design factors for hydraulic structures located along the coast. The rate of sea level rise in the West Sea was 0.61 ㎝/year. It was the fastest rise rate of all of Korea's seas. The sea level rise rate in the East Sea was calculated at 0.58 ㎝/year. This study also quantitatively confirmed that flood damage increases according to sea level rise using the United States' Environmental Protection Agency-Storm Water Management Model (EPA-SWMM). This study suggested a method for setting the disaster prevention performance targets of expected flood damage in coastal cities. Therefore, suggested disaster prevention performance targets should be highly specialized for coastal cities. However, sea level rise and rainfall are key factors that cause floods. Therefore, further research on disaster prevention in coastal cities should be carried out to consider the combined effects of sea level rise and rainfall.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1220 ◽  
Author(s):  
Luis Maria Abadie ◽  
Elisa Sainz de Murieta ◽  
Ibon Galarraga

Iberian coastal cities are subject to significant risks in the next decades due to climate change-induced sea-level rise. These risks are quite uncertain depending on several factors. In this article, we estimate potential economic damage in 62 Iberian coastal cities from 2020 to 2100 using regional relative sea-level rise data under three representative concentration pathways (RCP 8.5, RCP 4.5 and RCP 2.6). We analyze the expected accumulated damage costs if no adaptation actions take place and compare this scenario to the investment cost of some adaptation strategies being implemented. The results show that some adaptation strategies are less costly than the potential damage under inaction. In other words, it is economically rational to invest in adaptation even in a context of high uncertainty. These calculations are very relevant to inform climate change adaptation decisions and to better manage the risk posed by sea-level rise. Moreover, our findings show the importance of a good understanding of the shape of the sea-level rise and damage cost distributions to calculate the expected damage. We show that using the 50th percentile for these calculations is not adequate as it leads to a serious underestimation of expected damage and coastal risk.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Benjamin H. Strauss ◽  
Philip M. Orton ◽  
Klaus Bittermann ◽  
Maya K. Buchanan ◽  
Daniel M. Gilford ◽  
...  

AbstractIn 2012, Hurricane Sandy hit the East Coast of the United States, creating widespread coastal flooding and over $60 billion in reported economic damage. The potential influence of climate change on the storm itself has been debated, but sea level rise driven by anthropogenic climate change more clearly contributed to damages. To quantify this effect, here we simulate water levels and damage both as they occurred and as they would have occurred across a range of lower sea levels corresponding to different estimates of attributable sea level rise. We find that approximately $8.1B ($4.7B–$14.0B, 5th–95th percentiles) of Sandy’s damages are attributable to climate-mediated anthropogenic sea level rise, as is extension of the flood area to affect 71 (40–131) thousand additional people. The same general approach demonstrated here may be applied to impact assessments for other past and future coastal storms.


Sign in / Sign up

Export Citation Format

Share Document