scholarly journals Preliminary results and conclusions from mathematical modelling of thermal regime of railway track structure

Author(s):  
S. Hodas ◽  
L. IŽvolt ◽  
P. DobeŠ
2021 ◽  
Vol 27 (7) ◽  
pp. 525-538
Author(s):  
Libor Ižvolt ◽  
Peter Dobeš ◽  
Michaela Holešová ◽  
Deividas Navikas

This paper presents the results of numerical modelling of the influence of various factors (geometrical layout of the structural layers of the railway track, climatic factors and ballast fouling) on the freezing of railway track structure with a built-in thermal insulation layer of extruded polystyrene (Styrodur). At the same time, the suitability and expediency of incorporating the thermal insulation layer at the sub-ballast upper surface level (i.e. below the rail ballast construction layer), or at the level of subgrade surface are discussed. Numerical modelling results in the main factors that should be taken into account in the dimensioning of the sub-ballast layers with a built-in thermal insulation layer. Based on the data on the depth of freezing of the railway track structure obtained from numerical modelling, a design nomogram for dimensioning was created and subsequently the influence of the changes of climatic characteristics on the freezing of the railway track structure was then mathematically expressed.


2021 ◽  
Vol 11 (8) ◽  
pp. 3520
Author(s):  
Xiaopei Cai ◽  
Qian Zhang ◽  
Yanrong Zhang ◽  
Qihao Wang ◽  
Bicheng Luo ◽  
...  

In order to find out the influence of subgrade frost heave on the deformation of track structure and track irregularity of high-speed railways, a nonlinear damage finite element model for China Railway Track System III (CRTSIII) slab track subgrade was established based on the constitutive theory of concrete plastic damage. The analysis of track structure deformation under different subgrade frost heave conditions was focused on, and amplitude the limit of subgrade frost heave was put forward according to the characteristics of interlayer seams. This work is expected to provide guidance for design and construction. Subgrade frost heave was found to cause cosine-type irregularities of rails and the interlayer seams in the track structure, and the displacement in lower foundation mapping to rail surfaces increased. When frost heave occured in the middle part of the track slab, it caused the greatest amount of track irregularity, resulting in a longer and higher seam. Along with the increase in frost heave amplitude, the length of the seam increased linearly whilst its height increased nonlinearly. When the frost heave amplitude reached 35 mm, cracks appeared along the transverse direction of the upper concrete surface on the base plate due to plastic damage; consequently, the base plate started to bend, which reduced interlayer seams. Based on the critical value of track structures’ interlayer seams under different frost heave conditions, four control limits of subgrade frost heave at different levels of frost heave amplitude/wavelength were obtained.


Author(s):  
Qiang Yi ◽  
Caiyou Zhao ◽  
Ping Wang

To overcome the ill-conditioned matrix problem of the traditional transfer matrix method, the Floquet transform method and supercell technology are used to study the defect states of the periodic track structure. By solving the equations of the supercell directly, the propagation characteristics of elastic waves in the track structure with defects are analyzed. The existence of defects destroys the periodicity of track structure, thus resulting in the formation of defect states within the band gaps. Moreover, the elastic wave is localized near the defect position at the frequency of the defect state. The formation mechanism of the defect state in track structure can be explained by the local resonance at the defect. With the expansion of the defect range, the number of local resonance modes that can be formed near the defect increases, thus generating multiple defect states. Furthermore, the defect state enhances the vibration of the structure adjacent to the defect. Therefore, the vibration transmission coefficient in a finite-length range can be used to detect the defect characteristics in the track structure, and the defect degree can be evaluated by the peak frequency of the vibration transmission coefficient within the band gap.


2021 ◽  
Author(s):  
Alexey Kolos ◽  
Andrei Petriaev ◽  
Irina Kolos ◽  
Anastasia Konon

2020 ◽  
Vol 10 (2) ◽  
pp. 461 ◽  
Author(s):  
Lingyu Zhou ◽  
Tianyu Wei ◽  
Guangchao Zhang ◽  
Yingying Zhang ◽  
Mahunon Akim Djibril Gildas ◽  
...  

To study the initiation and expansion of the interlayer gap of the China Railway Track System Type II (CRTS-II) ballastless slab track structure under the action of repeated thermal loading as well as the influence of the interlayer gap on the displacement, strain and stiffness of the track structure, a 1/4 scale three-span ballastless slab track simply supported bridge structural system specimen was developed and 18 cycles of extremely thermal loading tests were carried out. Static loading tests were carried out before and after the repeated thermal loading test and the effects of the repeated temperature loading on the mechanical properties of the structural system were analyzed. The test results show that under repeated temperature loading, there is a gap between the track slab and cement emulsified asphalt (CA) mortar near the fixed end section of the beam (close to the shear slots). The interlayer gap gradually expands to the mid-span section in a “stepped” shape in three stages: initiation, expansion and stabilization. Under the same temperature load, the camber of the concrete box beam decreases gradually while that of the track structure increases gradually with the increase of the interlayer gap length. During the three stages of interlayer gap development, the track structure stiffness degrades gradually, and the fastest reduction rate during the expansion stage. At the end of the 18th cycle of thermal loading, a degradation of 14.96% and 2.52% is observed in the stiffness of the track structure and that of the ballastless track-bridge structural system, respectively.


Sign in / Sign up

Export Citation Format

Share Document