scholarly journals Effect of fuel injector hole diameter and injection timing on the mixture formation in a GDI engine - a CFD study

Author(s):  
Priyanka D. Jadhav ◽  
J.M. Mallikarjuna
2020 ◽  
Vol 143 (6) ◽  
Author(s):  
Shengli Wei ◽  
Zhiqing Yu ◽  
Zhilei Song ◽  
Fan Yang ◽  
Chengcheng Wu

Abstract This article presents a numerical investigation carried out to determine the effects of second and third injection timing on combustion characteristics and mixture formation of a gasoline direct injection (GDI) engine by comparing conical spray against multihole spray. The results showed that at the engine 80% full load of 2000 r/min, the difference in mixture distribution between the two sprays was obvious with double and triple injection strategies. With the second injection timing from 140 deg CA delay to 170 deg CA, the in-cylinder pressure, the in-cylinder temperature, and the heat release rate of the conical spray increased by 20.8%, 9.8%, and 30.7% and that of the multihole spray decreased by 30.7%, 13.6%, and 37.8%. The delay of the injection time reduced the performance of the engine with the multihole spray, and the performance of the multihole spray was obviously in the simulation of the triple injection strategy. However, for the conical spray, the application of the triple injection strategy increased the temperature and the pressure compared with the double injection strategy.


In this world, the population is increased and the number of vehicles increased. Not only population the pollution is increased lot by vehicles in the world harmful pollutant is realized from the vehicles like CO, HC, NOx and smoke particulates. It is inevitable to find some new technology, which increases the better performance and emission characteristics. Partially premixed compression ignition (PCCI) is the best technology for the reducing of harmful pollution in the vehicle, which uses the diesel as fuel it, gives the advantages of both CI and SI engine. This paper investigates the performance and emission characteristics of partially premixed diesel engine. Diesel engine has two injectors of port fuel injector (PFI) and direct injector (DI) to inject the fuel in different timing and electrical control unit (ECU) passes the power to PFI; it can control the injection timing and increases the fuel content from the fuel pump. The main aim in this paper is studied is effect of partially premixed ratio, performance of engine and emission characteristics of diesel engine


Author(s):  
Zhenkuo Wu ◽  
Zhiyu Han

In the present study, multidimensional computational fluid dynamics (CFD) simulations were carried out to study mixture formation in a turbocharged port-injection natural gas engine. In order to achieve robust simulation results, multiple cycle simulation was employed to remove the inaccuracies of initial conditions setting. First, the minimal number of simulation cycles required to obtain convergent cycle-to-cycle results was determined. Based on this, the in-cylinder mixture preparation for three typical operating conditions was studied. The effects of fuel injection timing and intake valve open scheme on the mixture formation were evaluated. The results demonstrated that three simulation cycles are needed to achieve convergence of the results for the present study. The analysis of the mixture preparation revealed that only in the initial phase of the intake stroke, there is an obvious difference between the three operating conditions. At the spark timing, for 5500 rpm, full load condition mixture composition throughout the cylinder is flammable, and for 2000 rpm, 2 bar operating condition part of the mixture is lean and nonflammable. The fuel injection timing has an insignificant impact on the mixture flammability at the spark timing. It was observed that the designed nonsynchronous intake valve open scheme has stronger swirl and x-direction tumble motion than the baseline case, leading to better mixture homogeneity and spatial distribution. With an increase in volumetric efficiency, particularly at 2000 rpm, full load condition, by 4.85% compared to the baseline, which is in line with experimental observation.


Sign in / Sign up

Export Citation Format

Share Document