A biomechanical study of the dynamic behavior of the organ of Corti: effect of stimulation type on shear gain

Author(s):  
Houguang Liu ◽  
Gang Cheng ◽  
Jianhua Yang ◽  
Zhihong Cheng ◽  
Zhushi Rao ◽  
...  
Author(s):  
R.J. Mount ◽  
R.V. Harrison

The sensory end organ of the ear, the organ of Corti, rests on a thin basilar membrane which lies between the bone of the central modiolus and the bony wall of the cochlea. In vivo, the organ of Corti is protected by the bony wall which totally surrounds it. In order to examine the sensory epithelium by scanning electron microscopy it is necessary to dissect away the protective bone and expose the region of interest (Fig. 1). This leaves the fragile organ of Corti susceptible to physical damage during subsequent handling. In our laboratory cochlear specimens, after dissection, are routinely prepared by the O-T- O-T-O technique, critical point dried and then lightly sputter coated with gold. This processing involves considerable specimen handling including several hours on a rotator during which the organ of Corti is at risk of being physically damaged. The following procedure uses low cost, readily available materials to hold the specimen during processing ,preventing physical damage while allowing an unhindered exchange of fluids.Following fixation, the cochlea is dehydrated to 70% ethanol then dissected under ethanol to prevent air drying. The holder is prepared by punching a hole in the flexible snap cap of a Wheaton vial with a paper hole punch. A small amount of two component epoxy putty is well mixed then pushed through the hole in the cap. The putty on the inner cap is formed into a “cup” to hold the specimen (Fig. 2), the putty on the outside is smoothed into a “button” to give good attachment even when the cap is flexed during handling (Fig. 3). The cap is submerged in the 70% ethanol, the bone at the base of the cochlea is seated into the cup and the sides of the cup squeezed with forceps to grip it (Fig.4). Several types of epoxy putty have been tried, most are either soluble in ethanol to some degree or do not set in ethanol. The only putty we find successful is “DUROtm MASTERMENDtm Epoxy Extra Strength Ribbon” (Loctite Corp., Cleveland, Ohio), this is a blue and yellow ribbon which is kneaded to form a green putty, it is available at many hardware stores.


Author(s):  
Cesar D. Fermin ◽  
Hans-Peter Zenner

Contraction of outer and inner hair cells (OHC&IHC) in the Organ of Corti (OC) of the inner ear is necessary for sound transduction. Getting at HC in vivo preparations is difficult. Thus, isolated HCs have been used to study OHC properties. Even though viability has been shown in isolated (iOHC) preparations by good responses to current and cationic stimulation, the contribution of adjoining cells can not be explained with iOHC preparations. This study was undertaken to examine changes in the OHC after expossure of the OHC to high concentrations of potassium (K) and sodium (Na), by carefully immersing the OC in either artifical endolymph or perilymph. After K and Na exposure, OCs were fixed with 3% glutaraldehyde, post-fixed in osmium, separated into base, middle and apex and embedded in Araldite™. One μm thick sections were prepared for analysis with the light and E.M. Cross sectional areas were measured with Bioquant™ software.Potassium and sodium both cause isolated guinea pig OHC to contract. In vivo high K concentration may cause uncontrolled and sustained contractions that could contribute to Meniere's disease. The behavior of OHC in the vivo setting might be very different from that of iOHC. We show here changes of the cell cytosol and cisterns caused by K and Na to OHC in situs. The table below shows results from cross sectional area measurements of OHC from OC that were exposed to either K or Na. As one would expect, from the anatomical arrangement of the OC, OHC#l that are supported by rigid tissue would probably be displaced (move) less than those OHC located away from the pillar. Surprisingly, cells in the middle turn of the cochlea changed their surface areas more than those at either end of the cochlea. Moreover, changes in surface area do not seem to differ between K and Na treated OCs.


2020 ◽  
Vol 21 (6) ◽  
pp. 619
Author(s):  
Kostandin Gjika ◽  
Antoine Costeux ◽  
Gerry LaRue ◽  
John Wilson

Today's modern internal combustion engines are increasingly focused on downsizing, high fuel efficiency and low emissions, which requires appropriate design and technology of turbocharger bearing systems. Automotive turbochargers operate faster and with strong engine excitation; vibration management is becoming a challenge and manufacturers are increasingly focusing on the design of low vibration and high-performance balancing technology. This paper discusses the synchronous vibration management of the ball bearing cartridge turbocharger on high-speed balancer and it is a continuation of papers [1–3]. In a first step, the synchronous rotordynamics behavior is identified. A prediction code is developed to calculate the static and dynamic performance of “ball bearing cartridge-squeeze film damper”. The dynamic behavior of balls is modeled by a spring with stiffness calculated from Tedric Harris formulas and the damping is considered null. The squeeze film damper model is derived from the Osborne Reynolds equation for incompressible and synchronous fluid loading; the stiffness and damping coefficients are calculated assuming that the bearing is infinitely short, and the oil film pressure is modeled as a cavitated π film model. The stiffness and damping coefficients are integrated on a rotordynamics code and the bearing loads are calculated by converging with the bearing eccentricity ratio. In a second step, a finite element structural dynamics model is built for the system “turbocharger housing-high speed balancer fixture” and validated by experimental frequency response functions. In the last step, the rotating dynamic bearing loads on the squeeze film damper are coupled with transfer functions and the vibration on the housings is predicted. The vibration response under single and multi-plane unbalances correlates very well with test data from turbocharger unbalance masters. The prediction model allows a thorough understanding of ball bearing turbocharger vibration on a high speed balancer, thus optimizing the dynamic behavior of the “turbocharger-high speed balancer” structural system for better rotordynamics performance identification and selection of the appropriate balancing process at the development stage of the turbocharger.


Sign in / Sign up

Export Citation Format

Share Document