Hair cell changes after cationic stimulation of corti's organ

Author(s):  
Cesar D. Fermin ◽  
Hans-Peter Zenner

Contraction of outer and inner hair cells (OHC&IHC) in the Organ of Corti (OC) of the inner ear is necessary for sound transduction. Getting at HC in vivo preparations is difficult. Thus, isolated HCs have been used to study OHC properties. Even though viability has been shown in isolated (iOHC) preparations by good responses to current and cationic stimulation, the contribution of adjoining cells can not be explained with iOHC preparations. This study was undertaken to examine changes in the OHC after expossure of the OHC to high concentrations of potassium (K) and sodium (Na), by carefully immersing the OC in either artifical endolymph or perilymph. After K and Na exposure, OCs were fixed with 3% glutaraldehyde, post-fixed in osmium, separated into base, middle and apex and embedded in Araldite™. One μm thick sections were prepared for analysis with the light and E.M. Cross sectional areas were measured with Bioquant™ software.Potassium and sodium both cause isolated guinea pig OHC to contract. In vivo high K concentration may cause uncontrolled and sustained contractions that could contribute to Meniere's disease. The behavior of OHC in the vivo setting might be very different from that of iOHC. We show here changes of the cell cytosol and cisterns caused by K and Na to OHC in situs. The table below shows results from cross sectional area measurements of OHC from OC that were exposed to either K or Na. As one would expect, from the anatomical arrangement of the OC, OHC#l that are supported by rigid tissue would probably be displaced (move) less than those OHC located away from the pillar. Surprisingly, cells in the middle turn of the cochlea changed their surface areas more than those at either end of the cochlea. Moreover, changes in surface area do not seem to differ between K and Na treated OCs.

1985 ◽  
Vol 116 (1) ◽  
pp. 153-167
Author(s):  
J. W. HANRAHAN ◽  
J. E. PHILLIPS

1. Electrophysiological and tracer flux techniques were used to studyregulation of KC1 reabsorption across locust recta. Physiologically high K+levels (100 mmolI−1) on the lumen side stimulated net 36Cl flux and reduced the theoretical energy cost of anion transport under open-circuit conductions. 2. The stimulation of short-circuit current (Ibc i.e. active C− absorption) by crude corpora cardiaca extracts (CC) was not dependent on exogenous Ca2+. Stimulations of Ibc were greatly enhanced in the presence of theophylline, indicating that the rate of synthesis of cAMP is increased by CC extracts. High CC levels lowered transepithelial resistance (Rt), suggesting that chloride transport stimulating hormone (CTSH) regulates both active Cl− absorption and counter-ion (K+) permeability. 3. High mucosal osmolarity or K+ concentration decreased Ibc and caused a disproportionately large increase in Rt, consistent with a decrease in theshunt (K+) conductance. Measurements of relative mucosal-to-serosal membrane resistance confirmed that high mucosal K+ levels reduced apical membrane conductance. Lowering mucosal pH to values observed in vivo atthe end of resorptive cycles also inhibited Ibc, apparently without affecting K+ permeability.


Oxytocin and vasopressin are stored with their binding proteins, the neurophysins, within neurosecretory vesicles in the nerve endings of the mammalian neurohypophysis. Depolarization of the nerve terminals, either by the arrival of a nerve impulse in vivo or by immersion of the gland in solutions of high K+ concentration in vitro , brings about a release of the hormones into the extracellular space. Douglas & Poisner (1964) have shown that this release is dependent on the entry of Ca 2+ into the nerve endings, and have proposed that Ca 2+ is necessary for coupling the stimulus of depolarization to the secretory process. Whereas Douglas (1967) suggests that Ca 2+ plays a part in emptying the neurosecretory vesicles by an exocytotic mechanism, the finding of Smith & Thorn (1965) that Ca 2+ dissociates the hormone-neurophysin complex suggests that secretion may take place by diffusion of the hormones through the vesicular and roteins. A biochemical method of distinguishing between these two mechanisms is to study whether other macromolecular constituents of the neurosecretory vesicles are specifically released by depolarizing stimuli. Fawcett, Powell & Sachs (1968) have previously shown by tracer experiments in dogs that a protein cross-reacting with a rabbit antiserum to bovine neurophysin is released from neurohypophyses stimulated by high K + solutions in vitro or by haemorrhage in vivo , but their technique did not allow a quantitation of the protein in relation to the amount of hormone released. A parallel release of neurophysin and hormone would be expected if exocytosis plays a part in the secretory mechanism.


1991 ◽  
Vol 260 (5) ◽  
pp. F680-F687 ◽  
Author(s):  
T. D. DuBose ◽  
D. W. Good

Free-flow micropuncture experiments were performed to examine directly the effects of chronic hyperkalemia on renal ammonium production, urinary ammonium excretion, and proximal convoluted tubule ammonium transport in the rat in vivo. Munich-Wistar rats were pair-fed either a control or a high-K+ diet for 6-11 days. Chronic K+ loading was associated with an increase in plasma K+ concentration and significant systemic metabolic acidosis. Renal blood flow did not differ in control and high-K+ rats. In the hyperkalemic rats, urinary ammonium excretion was reduced by 40% and whole kidney ammonium production was reduced by 50% compared with controls. In contrast, chronic hyperkalemia had no significant effect on net ammonium transport by either the early or late segment of the proximal convoluted tubule. Chronic hyperkalemia also had no effect on the absolute rate of ammonium delivery to early or late proximal convoluted tubule sites. These results indicate that a change in renal ammonium production does not necessarily correlate with a change in proximal tubule ammonium transport and that reduced urinary ammonium excretion in chronic hyperkalemia is not due to impaired secretion of ammonium by the proximal convoluted tubule. Chronic hyperkalemia may reduce ammonium excretion by decreasing transfer of ammonium from proximal tubules to collecting ducts in the renal medulla.


Author(s):  
R.J. Mount ◽  
R.V. Harrison

The sensory end organ of the ear, the organ of Corti, rests on a thin basilar membrane which lies between the bone of the central modiolus and the bony wall of the cochlea. In vivo, the organ of Corti is protected by the bony wall which totally surrounds it. In order to examine the sensory epithelium by scanning electron microscopy it is necessary to dissect away the protective bone and expose the region of interest (Fig. 1). This leaves the fragile organ of Corti susceptible to physical damage during subsequent handling. In our laboratory cochlear specimens, after dissection, are routinely prepared by the O-T- O-T-O technique, critical point dried and then lightly sputter coated with gold. This processing involves considerable specimen handling including several hours on a rotator during which the organ of Corti is at risk of being physically damaged. The following procedure uses low cost, readily available materials to hold the specimen during processing ,preventing physical damage while allowing an unhindered exchange of fluids.Following fixation, the cochlea is dehydrated to 70% ethanol then dissected under ethanol to prevent air drying. The holder is prepared by punching a hole in the flexible snap cap of a Wheaton vial with a paper hole punch. A small amount of two component epoxy putty is well mixed then pushed through the hole in the cap. The putty on the inner cap is formed into a “cup” to hold the specimen (Fig. 2), the putty on the outside is smoothed into a “button” to give good attachment even when the cap is flexed during handling (Fig. 3). The cap is submerged in the 70% ethanol, the bone at the base of the cochlea is seated into the cup and the sides of the cup squeezed with forceps to grip it (Fig.4). Several types of epoxy putty have been tried, most are either soluble in ethanol to some degree or do not set in ethanol. The only putty we find successful is “DUROtm MASTERMENDtm Epoxy Extra Strength Ribbon” (Loctite Corp., Cleveland, Ohio), this is a blue and yellow ribbon which is kneaded to form a green putty, it is available at many hardware stores.


1978 ◽  
Vol 87 (1) ◽  
pp. 181-191 ◽  
Author(s):  
Alfred S. Wolf ◽  
Klaus A. Musch ◽  
Werner Speidel ◽  
Jürgen R. Strecker ◽  
Christian Lauritzen

ABSTRACT A new model for the perfusion of human term-placentas has been developed for studies on the placental biogenesis of C-18 and C-19 steroids. For viability criteria, the glucose- and oxygen-consumption, regional perfusion control by dye-infusions or scanning after injection of 99Tc-labelled macroparticles, and the histological qualification were chosen. The recycled perfusate was investigated for the steroids oestrone (Oe1), oestradiol-17β (Oe2), oestriol (Oe3), 4-androstene-3,17-dione (A), testosterone (T), and human placental lactogen (HPL) by radioimmunoassay in controls and perfusions with the foetal steroid precursor dehydroepiandrosterone sulphate (DHA-S). In control perfusions, steroid hormones were found in constant ratios (Oe1:Oe2:Oe3:T:A = 30:1.5:100:0.35:1). Following the administration of 10 mg DHA-S for testing the metabolic capacity of the organ, high concentrations of Oe1 (90–720 ng/ml = 250–3970 % as compared to 100% pre-injection values) were found, shortly preceded by a rapid increase of A (66–1000 ng/ml = 100–16 000 %). A typical surge of T (5.3–147 ng/ml = 265–4640 %) preceded the normally slower increment of Oe2 (22–220 ng/ml = 1570–4330 %). The concentrations of Oe3 and HPL remained nearly unchanged. From different steroid patterns after DHA-S-load, two distinct responses of term-placentas could be differentiated: Group I (n=12) showed high concentrations of Oe1 (3200 ± 940 %), a small increase of T (1020 ± 500%), as well as low and delayed values of Oe2 (1660 ± 450%). In Group II (n = 5), values were high for T (3160 ± 1020%) and Oe2 (3300 ± 1110%), whereas Oe1 was found in a lower range (508 ± 302%). In contrast to in vivo findings in maternal venous blood after DHS-S injection to the mother, oestrone was found in perfusions as the main oestrogen fraction from DHA-S. Thus, the analysis of such metabolic differences might be of help in the interpretation of complex results from the DHA-S-loading test.


Author(s):  
Н. Демиденко ◽  
N. Demidenko

In the Mezen bay and estuaries Mezen and Kuloy can be high concentrations of mud suspension there, involving the formation at times mobile suspensions and settled mud. Within estuaries the river water is mixed with the sea water by the action of tidal motions, by waves on the sea surface and by the river discharge forcing its way to the sea. Nearly all shallow tidal estuaries, where currents exceed about 1,0m s-1 and where sand is present, have sand waves. Sand waves have a variety of cross-sectional and plan forms.


2020 ◽  
Vol 318 (1) ◽  
pp. G1-G9 ◽  
Author(s):  
Richard A. Jacobson ◽  
Kiedo Wienholts ◽  
Ashley J. Williamson ◽  
Sara Gaines ◽  
Sanjiv Hyoju ◽  
...  

Perforations, anastomotic leak, and subsequent intra-abdominal sepsis are among the most common and feared complications of invasive interventions in the colon and remaining intestinal tract. During physiological healing, tissue protease activity is finely orchestrated to maintain the strength and integrity of the submucosa collagen layer in the wound. We (Shogan, BD et al. Sci Trans Med 7: 286ra68, 2015.) have previously demonstrated in both mice and humans that the commensal microbe Enterococcus faecalis selectively colonizes wounded colonic tissues and disrupts the healing process by amplifying collagenolytic matrix-metalloprotease activity toward excessive degradation. Here, we demonstrate for the first time, to our knowledge, a novel collagenolytic virulence mechanism by which E. faecalis is able to bind and locally activate the human fibrinolytic protease plasminogen (PLG), a protein present in high concentrations in healing colonic tissue. E. faecalis-mediated PLG activation leads to supraphysiological collagen degradation; in this study, we demonstrate this concept both in vitro and in vivo. This pathoadaptive response can be mitigated with the PLG inhibitor tranexamic acid (TXA) in a fashion that prevents clinically significant complications in validated murine models of both E. faecalis- and Pseudomonas aeruginosa-mediated colonic perforation. TXA has a proven clinical safety record and is Food and Drug Administration approved for topical application in invasive procedures, albeit for the prevention of bleeding rather than infection. As such, the novel pharmacological effect described in this study may be translatable to clinical trials for the prevention of infectious complications in colonic healing. NEW & NOTEWORTHY This paper presents a novel mechanism for virulence in a commensal gut microbe that exploits the human fibrinolytic system and its principle protease, plasminogen. This mechanism is targetable by safe and effective nonantibiotic small molecules for the prevention of infectious complications in the healing gut.


1999 ◽  
Vol 339 (2) ◽  
pp. 299-307 ◽  
Author(s):  
Arthur L. KRUCKEBERG ◽  
Ling YE ◽  
Jan A. BERDEN ◽  
Karel van DAM

The Hxt2 glucose transport protein of Saccharomyces cerevisiae was genetically fused at its C-terminus with the green fluorescent protein (GFP). The Hxt2-GFP fusion protein is a functional hexose transporter: it restored growth on glucose to a strain bearing null mutations in the hexose transporter genes GAL2 and HXT1 to HXT7. Furthermore, its glucose transport activity in this null strain was not markedly different from that of the wild-type Hxt2 protein. We calculated from the fluorescence level and transport kinetics that induced cells had 1.4×105 Hxt2-GFP molecules per cell, and that the catalytic-centre activity of the Hxt2-GFP molecule in vivo is 53 s-1 at 30 °C. Expression of Hxt2-GFP was induced by growth at low concentrations of glucose. Under inducing conditions the Hxt2-GFP fluorescence was localized to the plasma membrane. In a strain impaired in the fusion of secretory vesicles with the plasma membrane, the fluorescence accumulated in the cytoplasm. When induced cells were treated with high concentrations of glucose, the fluorescence was redistributed to the vacuole within 4 h. When endocytosis was genetically blocked, the fluorescence remained in the plasma membrane after treatment with high concentrations of glucose.


2021 ◽  
Vol 8 (3) ◽  
pp. 39
Author(s):  
Britani N. Blackstone ◽  
Summer C. Gallentine ◽  
Heather M. Powell

Collagen is a key component of the extracellular matrix (ECM) in organs and tissues throughout the body and is used for many tissue engineering applications. Electrospinning of collagen can produce scaffolds in a wide variety of shapes, fiber diameters and porosities to match that of the native ECM. This systematic review aims to pool data from available manuscripts on electrospun collagen and tissue engineering to provide insight into the connection between source material, solvent, crosslinking method and functional outcomes. D-banding was most often observed in electrospun collagen formed using collagen type I isolated from calfskin, often isolated within the laboratory, with short solution solubilization times. All physical and chemical methods of crosslinking utilized imparted resistance to degradation and increased strength. Cytotoxicity was observed at high concentrations of crosslinking agents and when abbreviated rinsing protocols were utilized. Collagen and collagen-based scaffolds were capable of forming engineered tissues in vitro and in vivo with high similarity to the native structures.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 745
Author(s):  
Enrico Bergamaschi ◽  
Giacomo Garzaro ◽  
Georgia Wilson Jones ◽  
Martina Buglisi ◽  
Michele Caniglia ◽  
...  

Carbon nanotubes (CNTs) and carbon nanofibers (CNFs) are erroneously considered as singular material entities. Instead, they should be regarded as a heterogeneous class of materials bearing different properties eliciting peculiar biological outcomes both in vitro and in vivo. Given the pace at which the industrial production of CNTs/CNFs is increasing, it is becoming of utmost importance to acquire comprehensive knowledge regarding their biological activity and their hazardous effects in humans. Animal studies carried out by inhalation showed that some CNTs/CNFs species can cause deleterious effects such as inflammation and lung tissue remodeling. Their physico-chemical properties, biological behavior and biopersistence make them similar to asbestos fibers. Human studies suggest some mild effects in workers handling CNT/CNF. However, owing to their cross-sectional design, researchers have been as yet unable to firmly demonstrate a causal relationship between such an exposure and the observed effects. Estimation of acceptable exposure levels should warrant a proper risk management. The aim of this review is to challenge the conception of CNTs/CNFs as a single, unified material entity and prompt the establishment of standardized hazard and exposure assessment methodologies able to properly feeding risk assessment and management frameworks.


Sign in / Sign up

Export Citation Format

Share Document