An improved analytical method of inverse kinematics of a humanoid robot

Author(s):  
Xuesi Li ◽  
Haobin Shi ◽  
Ruichao Li
2005 ◽  
Vol 2005 (11) ◽  
pp. 1759-1779 ◽  
Author(s):  
Vladimir Ivancevic ◽  
Nicholas Beagley

A novel, brain-like, hierarchical (affine-neuro-fuzzy-topological) control for biomechanically realistic humanoid-robot biodynamics (HB), formulated previously in [15, 16], is proposed in the form of a tensor-invariant, “meta-cybernetic” functor machine. It represents a physiologically inspired, three-level, nonlinear feedback controller of muscular-like joint actuators. On the spinal level, nominal joint-trajectory tracking is formulated as an affine Hamiltonian control system, resembling the spinal (autogenetic-reflex) “motor servo.” On the cerebellar level, a feedback-control map is proposed in the form of self-organized, oscillatory, neurodynamical system, resembling the associative interaction of excitatory granule cells and inhibitory Purkinje cells. On the cortical level, a topological “hyper-joystick” command space is formulated with a fuzzy-logic feedback-control map defined on it, resembling the regulation of locomotor conditioned reflexes. Finally, both the cerebellar and the cortical control systems are extended to provide translational force control for moving6-degree-of-freedom chains of inverse kinematics.


Author(s):  
Tuna Balkan ◽  
M. Kemal Özgören ◽  
M. A. Sahir Arikan ◽  
H. Murat Baykurt

Abstract A semi-analytical method and a computer program are developed for inverse kinematics solution of a class of robotic manipulators, in which four joint variables are contained in wrist point equations. For this case, it becomes possible to express all the joint variables in terms of a joint variable, and this reduces the inverse kinematics problem to solving a nonlinear equation in terms of that joint variable. The solution can be obtained by iterative methods and the remaining joint variables can easily be computed by using the solved joint variable. Since the method is manipulator dependent, the equations will be different for kinematically different classes of manipulators, and should be derived analytically. A significant benefit of the method is that, the singular configurations and the multiple solutions indicated by sign ambiguities can be determined while deriving the inverse kinematic expressions. The developed method is applied to a six-revolute-joint industrial robot, FANUC Arc Mate Sr.


Robotica ◽  
2014 ◽  
Vol 33 (4) ◽  
pp. 747-767 ◽  
Author(s):  
Masayuki Shimizu

SUMMARYThis paper proposes an analytical method of solving the inverse kinematic problem for a humanoid manipulator with five degrees-of-freedom (DOF) under the condition that the target orientation of the manipulator's end-effector is not constrained around an axis fixed with respect to the environment. Since the number of the joints is less than six, the inverse kinematic problem cannot be solved for arbitrarily specified position and orientation of the end-effector. To cope with the problem, a generalized unconstrained orientation is introduced in this paper. In addition, this paper conducts the singularity analysis to identify all singular conditions.


Sign in / Sign up

Export Citation Format

Share Document