scholarly journals Experimental validation of multiphase flow models and testing of multiphase flow meters: a critical review of flow loops worldwide

Author(s):  
O. O. Bello ◽  
G. Falcone ◽  
C. Teodoriu
2021 ◽  
pp. 127-139
Author(s):  
E. A. Gromova ◽  
S. A. Zanochuev

The article highlights the relevance of reliable estimation of the composition and properties of reservoir gas during the development of gas condensate fields and the complexity of the task for reservoirs containing zones of varying condensate content. The authors have developed a methodology that allows monitoring the composition of gas condensate well streams of similar reservoirs. There are successful examples of the approach applied in Achimov gas condensate reservoirs at the Urengoy oil and gas condensate field. The proposed approach is based on the use of the so-called fluid factors, which are calculated on the basis of the known component compositions of various flows of the studied hydrocarbon system. The correlation between certain "fluid factors" and the properties of reservoir gas (usually determined by more labor-consuming methods) allows one to quickly obtain important information necessary to solve various development control tasks.


2013 ◽  
Vol 62 ◽  
pp. 431-441 ◽  
Author(s):  
Maarten W. Saaltink ◽  
Victor Vilarrasa ◽  
Francesca De Gaspari ◽  
Orlando Silva ◽  
Jesús Carrera ◽  
...  

2015 ◽  
Vol 137 (9) ◽  
Author(s):  
Prasanna Hariharan ◽  
Gavin D’Souza ◽  
Marc Horner ◽  
Richard A. Malinauskas ◽  
Matthew R. Myers

As part of an ongoing effort to develop verification and validation (V&V) standards for using computational fluid dynamics (CFD) in the evaluation of medical devices, we have developed idealized flow-based verification benchmarks to assess the implementation of commonly cited power-law based hemolysis models in CFD. The verification process ensures that all governing equations are solved correctly and the model is free of user and numerical errors. To perform verification for power-law based hemolysis modeling, analytical solutions for the Eulerian power-law blood damage model (which estimates hemolysis index (HI) as a function of shear stress and exposure time) were obtained for Couette and inclined Couette flow models, and for Newtonian and non-Newtonian pipe flow models. Subsequently, CFD simulations of fluid flow and HI were performed using Eulerian and three different Lagrangian-based hemolysis models and compared with the analytical solutions. For all the geometries, the blood damage results from the Eulerian-based CFD simulations matched the Eulerian analytical solutions within ∼1%, which indicates successful implementation of the Eulerian hemolysis model. Agreement between the Lagrangian and Eulerian models depended upon the choice of the hemolysis power-law constants. For the commonly used values of power-law constants (α  = 1.9–2.42 and β  = 0.65–0.80), in the absence of flow acceleration, most of the Lagrangian models matched the Eulerian results within 5%. In the presence of flow acceleration (inclined Couette flow), moderate differences (∼10%) were observed between the Lagrangian and Eulerian models. This difference increased to greater than 100% as the beta exponent decreased. These simplified flow problems can be used as standard benchmarks for verifying the implementation of blood damage predictive models in commercial and open-source CFD codes. The current study used only a power-law model as an illustrative example to emphasize the need for model verification. Similar verification problems could be developed for other types of hemolysis models (such as strain-based and energy dissipation-based methods). And since the current study did not include experimental validation, the results from the verified models do not guarantee accurate hemolysis predictions. This verification step must be followed by experimental validation before the hemolysis models can be used for actual device safety evaluations.


2020 ◽  
Author(s):  
Andrey Zozulya ◽  
Vladimir Baranov ◽  
Mikhail Miletski ◽  
Konstantin Rymarenko ◽  
Marat Nukhaev ◽  
...  

Summary Liquid hydrocarbon quantity optimization is among key technological indicators in the gas condensate fields development. To achieve it one needs to select and maintain optimal well-operating conditions. In this case, multiphase flow measurements are prioritized as an important optimization tool. The article presents a proven record of implementing the technology of instrumentalised virtual multiphase flow metering in the wells of the Vostochno-Makarovskoye gas condensate field to increase the efficiency of liquid hydrocarbon production. Virtual flow metering technologies that use modeling methods and adapt models to actual well-operating parameters aiming at determining well production rates are becoming increasingly popular. At that, the quality of the data at the model input does not often guarantee a qualitative determination of multiphase flow parameters. This article presents a track record of building a virtual multiphase flow meter based on single-phase streamer flow meters mounted on gas wells. Venturi flow meters were used. A series of well tests were conducted in various modes. To configure the streamer model, additional tuning studies were conducted on the separator. While testing the wells, the results of constructing a streamer model were verified by nodal analysis.


2020 ◽  
Author(s):  
Tommaso Barbariol ◽  
Enrico Feltresi ◽  
Gian Antonio Susto

Author(s):  
Bruno Pinguet ◽  
Paul Guieze ◽  
Dave MacWilliam ◽  
Brad Martin

Representative reservoir fluid sampling and characterization has become increasingly important over the years. With exploration, appraisal and development activities moving into marginal fields and more challenging environments, accurate fluid characterization becomes more critical. This can be said for the formation tester, DST and multiphase sampling and fluid characterization environments with the most challenging area in recent years arguably being the multiphase environment. Multiphase flow meters have been accepted for several years now by the industry. Their use in permanent or well testing applications has been growing rapidly. In many cases, multiphase flow meters have replaced the separator for flow rate evaluation, but some fundamental needs from the client were not addressed properly, such as the ability to collect representative samples for phase-behavior characterization. Moreover, metering accuracies has been questionable in many cases (at very high GVF or in wet gas conditions, high pressure or /and high temperature).This paper focus on the Multiphase Active Sampling Device Service (MASS), a fluid sampling and analysis service that can be provided with the Vx multiphase metering technology with the objective of collecting representative samples, isolating and analyzing each fluid phase, and providing data from the analysis to input to the Vx acquisition software data to obtain more accurate flow rates. The collection of phase representative samples also opens the opportunity for a full recombination PVT study to be performed using the improved recombination ratio at line conditions from the multiphase flow meter. This dedicated multiphase fluid sampling and analysis system, combined with Vx technology provides flow rate better and fluid property than to a conventional test separator system.


Author(s):  
Zurwa Khan ◽  
Amine Meziou ◽  
Reza Tafreshi ◽  
Matthew Franchek ◽  
Karolos Grigoriadis

Abstract Due to the global increase in energy demand, the need for economic oil and gas production is rising more than ever. Therefore, it is necessary to ensure that subsea architecture designs are economical and safety oriented. While numerous challenges are encountered during subsea system’s installation and operation phases, most of these challenges can be avoided by ensuring an economical and reliable design. For a safe and cost-effective design and operating scenario, it is essential to predict the hydraulic and thermal behavior of multiphase fluid encountered in petroleum pipelines for a range of conditions. This cannot be accomplished by empirical models, which are dependent on limited data available. Consequently, mechanistic low-dimensional models have been used for two-phase gas-liquid steady-state flow. However, mechanistic low-dimensional models assume adiabatic conditions, which is rarely the case in subsea architectures, which encounter cold surroundings. Therefore, to predict the temperature-based characteristics of multiphase flow in environments with thermal gradients, a thermal model has been developed and validated with experimental data. 80% of the validation data was predicted by this developed thermal model with error difference of less than 30%. The developed two-phase gasliquid thermal model was merged with Beggs and Brill hydraulic multiphase flow model to predict the overall behavior of two-phase gas-liquid flow, and used to develop an optimal model-based multi-well subsea architecture design. A case study of a four-well subsea system was used to demonstrate the automated subsea architecture optimization technique. Through this case study, it was shown that approximately 23% of savings in pipelines procurement could be made relative to the conventional designing approach. Industry standards, safety factors, and multiphase flow models were used to design jumpers and place the manifold for a subsea multi-well system. Merging hydraulic and thermal multiphase flow models showed the effect of temperature on the flow, which led to an optimized design for the subsea insulation in which issues such as wax deposition can be prevented. The resulting optimized subsea architecture was then implemented in Simscape® environment to obtain the transient response. Along with optimized subsea architecture automated design, the developed thermal model has the potential to be used for real-time prediction of two-phase flow rate, pressure drop and void fraction as virtual sensors to provide economical alternative to expensive and impractical hardware sensors. Furthermore, the developed model can also be used to design effective control strategies for multiphase flow regulation in jumpers and prevention of backflow at the manifold.


2019 ◽  
Author(s):  
Anton Skopich ◽  
Edward Neubauer ◽  
John Clarke ◽  
Chingiz Bopiyev

Sign in / Sign up

Export Citation Format

Share Document