Volume 5A: Pipelines, Risers, and Subsea Systems
Latest Publications


TOTAL DOCUMENTS

50
(FIVE YEARS 50)

H-INDEX

1
(FIVE YEARS 1)

Published By American Society Of Mechanical Engineers

9780791858806

Author(s):  
Jinxin Yu ◽  
Weimin Chen

Abstract The lateral displacement and the rotational angle of marine riser are likely to get larger as it is in stronger ocean current and, particularly, undergoes the consequences such as vortex-induced vibration or collisions between individual risers. The riser vibration with large amplitude value will lead to fatigue or coating damage of the structural body. In this study, the active vibration control, in terms of its angle and the displacement reductions, of a flexible riser under time-varying distributed load are considered using boundary control. The governing equations of the structural dynamics involving the control system of a flexible riser are built. The riser is modeled as an Euler-Bernoulli beam under the actions of ocean loads and the feedback controller. A torque actuator is introduced at the upper riser boundary, and the control law is employed to generate the required signal for riser angle control and displacement reduction. The feed-back control law is designed in state space, and the optimization of the control law is implemented based on the LQR approach. The linear quadratic regulator is used to determine the gain matrix, which can calculate the boundary control law by solving the Recatti equation. Based on the numerical simulations, the responses of the open-loop system and closed-loop system are presented and compared. The effectiveness of the vibration suppression of the flexible riser is examined.


Author(s):  
Hualei Yi ◽  
Yun Hao ◽  
Xiaohong Zhou

Abstract For deepwater subsea tie-back gas field development, hydrate tends to be formed in deepwater subsea production system and gas pipeline due to high pressure and low temperature. Based on the gas field A development, this paper studies the selection of hydrate inhibitors and injection points, i.e. different injection points with different inhibitors. Transient and steady flow simulations are performed using the OLGA software widely used for multiphase flow pipeline study in the world. The produced water flow rate affects the hydrate inhibition in case of well opening, including cases of different times with different water temperatures. This paper presents the calculation of the maximum inhibitor injection rate in the subsea pipeline by taking the whole production years into consideration. The measures on hydrate remediation are taken by quickly relieving the subsea pipeline pressure from wellheads and the platform according to different hydrate locations. Now more and more deepwater gas fields are developed in South China Sea and around the world. The experience obtained from the gas field A development will benefit the hydrate inhibition for future deepwater gas field development.


Author(s):  
Néstor González Díez ◽  
Juan P. Pontaza ◽  
Oluwaseun M. Awe ◽  
Pieter van Beek ◽  
Can Tümer

Abstract The water injection system of an FPSO active in the Gulf of Guinea is to increase injection capacity to levels that are threatening from a flow-induced vibration perspective, such that hydrocarbon recovery can be accelerated. A three-tier method based on the internal guidelines of the system operator has been employed to assess the level of FIV threat expected from the increase in flow rate. A high-level screening analysis is followed by a more detailed approach, modified in this case by introducing knowledge obtained from field data gathered during a comprehensive measurement campaign aboard the FPSO. In particular, the data has been used to calibrate the finite element model of the mechanical layout of the pipework and associated supporting by making use of an optimization technique. The PSD of the flow excitation has been calibrated to match the measured response of the system, with descriptions of the turbulent excitation introduced in elbows by means of PSD functions available in the open literature. The PSDs, once calibrated, are further scaled to the future flow-rates so that they can be used as input to the mechanical response analysis. Though the high-level screening analysis delivers the conclusion that flow rates should be limited, the detailed analysis proves that the expected vibrations will be acceptable.


Author(s):  
Yifan Gao ◽  
Wei Chen ◽  
Yong Bai

Abstract A new theoretical model was proposed to calculate the burst pressure of steel strip reinforced flexible composite pipes (steel strip PSP) based on the thin wall cylindrical shell theory and the squeeze pressure expression between layers was derived. The radial displacement discontinuity of pipe wall in pipe-end fitting joint area takes in account in this model which could result in Stress Concentration Effect (SCE) in reinforcement layers. The SCE is caused by swaging end fitting clamped tightly at the end of the pipe. The result of the hoop strain in the joint area calculated by this model is greater than the one calculated by the classic elastic model, which leads to relative conservative burst strength of the pipe. The hoop stress variation via internal pressure on innermost reinforcement layer is introduced to predict the burst strength of the pipe. As the stress in the joint area reaches its ultimate strength, the strain on the same layer in the point far away from this area (x→∞) is extracted and the corresponding internal pressure is obtained as the burst strength of the pipe. The calculated data from two models were compared with the experiment results and the proposed new model showed better accuracy than the classic elastic model. Final additional parametric studies were conducted, while the effect of the pipe diameter, the winding angle, the number and thickness of the reinforcement layer on the burst strength of the pipe were studied. Useful conclusions were drawn for the design and application of the steel strip PSP in offshore engineering.


Author(s):  
Lin Zhao ◽  
Hang Su ◽  
Yanju Yin

Abstract Regarding the very large top tension of ocean deep water riser which is caused by the heavy self-weight, a innovated buoyancy system is designed. This system can effectively decrease the top tension and improve the performance of the riser movement. In order to study the upper and lower part of the floating system, a specialized model test is carried out, where the acceleration, amplitude, frequency and trajectory of the interested points along the risers are investigated. It has been observed that with the increase of the current speed, both the vibration acceleration and the vibration frequency are increasing but the bare riser amplitude is decreasing. At the speed of 0.2m/s, the resonance phenomenon is observed, but the same phenomenon is not observed for the middle floating riser subjecting to different flow velocities. At the speed of 0.4 m/s, the largest amplitude is captured. Due to the response differences of the floating riser at the up and down parts of the middle floating riser, when the amplitude is increasing, the vibration frequency is decreasing, both at cross flow (CF) direction and inline flow (IL) direction. Especially the vibration behavior of the interested points is most influenced by the buoyancy. Under different models, vibration at different flow velocities is presented along bare riser, the modal vibration effects of the floating riser will decrease In addition, according to the experiment condition, Orcaflex is applied to conduct the numerical simulation to get the vibration law of the corresponding feature points and compare it with the experimental results. The results indicate that the numerical analysis reasonably match with experimental results.


Author(s):  
Yangye He ◽  
Hailong Lu ◽  
Murilo Augusto Vaz ◽  
Marcelo Caire

Abstract The flexible riser top connection to the floating production platform is a critical region for fatigue lifetime (re)assessment. The interface with the I-tube and its curved sleeve combined with the gap between the riser and bend stiffener may lead to different curvature distribution when compared to the traditional modeling approach that considers the bend stiffener attached to the pipe. For a more accurate top connection assessment, the flexible riser bending hysteresis can also be directly incorporated in the global dynamic analysis helping to reduce curvature amplitude and lifetime prediction conservatism. This work investigates a 7” flexible riser-bend stiffener top connection with I-tube interface by performing irregular wave global dynamic analyses with the OrcaFlex package and considering a nonlinear bending moment vs curvature riser behavior obtained from a detailed cross sectional model developed in Abaqus. OrcaFlex curvature distribution results are also compared with a quasi-static finite element model that uses an elasto-plastic formulation with kinematic hardening to represent riser hysteresis through an equivalent beam model. A good curvature distribution correlation is observed for both top connection models (OrcaFlex x Abaqus) in the bend stiffener area with reduced amplitudes when riser bending hysteresis is considered.


Author(s):  
Fernando Jorge Mendes de Sousa ◽  
Marcos Queija de Siqueira ◽  
José Renato Mendes de Sousa ◽  
George Carneiro Campello

Abstract Traditionally, fatigue life calculations are very expensive in terms of time and computer resources. They are usually performed during riser design phases, when several lines with similar characteristics need to be analyzed. While operating, when problems are detected, fatigue analyses are also necessary to help to decide if any action is needed. In both situations, end fittings and bendstiffeners are usually the critical regions. Considering the high number of flexible risers installed in Brazil and the structural complexity of this kind of structure, a robust and fast methodology to evaluate the fatigue life of flexible risers becomes attractive. In this way, this paper proposes a analytical/numerical methodology to evaluate the fatigue life at the top region of flexible pipes. Using the top imposed motions and taking into account the properties of all structures in the riser, it is possible to evaluate tension analytically. Combining tension and the rotations imposed at the top of the riser, curvatures are determined, and stresses can be calculated. Finally, SN curves and the Miner’s rule for damage accumulation allow the estimation of fatigue life. The obtained results indicate that the proposed methodology is conservative when compared to traditional ones. Also, it is very fast, allowing the fatigue life estimation in minutes.


Author(s):  
Venkatesan Arumugam Elumalai ◽  
Sigbjørn Daasvatn ◽  
Daniel Karunakaran ◽  
Kjell Larsen ◽  
Bernt Johan Leira

Abstract The requirement for fossil fuels expedites for an advancement in the existing subsea technology. The developments evolved as the search for hydrocarbons moved from onshore to offshore, followed by a transition from shallow to deep and ultra-deep waters. Another huge milestone was achieved, when production systems made a transition from topsides to subsea units for efficiency. Currently, there is an enormous drive to minimize the operational costs involved in the processing of hydro-carbons. Researches are underway towards what would be yet another significant feat in the oil and gas industry, which is by moving the processing systems to subsea. One such impressive concept, which is being developed, is the Submerged Production Unit (SPU). This study is an initial attempt to investigate the challenges associated with the SPU focusing on the factors influencing design, launching and towing. A design concept that goes back and forth from performance and design spaces was used in modelling the SPU, solving the complexity that revolved around assembling the hollow Glass Reinforced Plastic (GRP) beams with subsea buoyancy materials. Submerged Tow Method (STM), an adaptation of Controlled Depth Tow Method (CDTM) was used instead of the conventional way of lifting the equipment using cranes of heavy lift vessels or construction vessels on site during deployment considering cost and safety. OrcaFlex software was used for towing analysis. End force in global X direction on towline, obtained from static analysis was used to identify the Bollard Pull (BP) required for towing the SPU. Dynamic analysis was performed for different environmental conditions to identify the maximum effective tension on the towline. BP requirement of 100t was estimated from the towing analysis. This study was carried out by author as a master’s thesis [1].


Author(s):  
Zurwa Khan ◽  
Amine Meziou ◽  
Reza Tafreshi ◽  
Matthew Franchek ◽  
Karolos Grigoriadis

Abstract Due to the global increase in energy demand, the need for economic oil and gas production is rising more than ever. Therefore, it is necessary to ensure that subsea architecture designs are economical and safety oriented. While numerous challenges are encountered during subsea system’s installation and operation phases, most of these challenges can be avoided by ensuring an economical and reliable design. For a safe and cost-effective design and operating scenario, it is essential to predict the hydraulic and thermal behavior of multiphase fluid encountered in petroleum pipelines for a range of conditions. This cannot be accomplished by empirical models, which are dependent on limited data available. Consequently, mechanistic low-dimensional models have been used for two-phase gas-liquid steady-state flow. However, mechanistic low-dimensional models assume adiabatic conditions, which is rarely the case in subsea architectures, which encounter cold surroundings. Therefore, to predict the temperature-based characteristics of multiphase flow in environments with thermal gradients, a thermal model has been developed and validated with experimental data. 80% of the validation data was predicted by this developed thermal model with error difference of less than 30%. The developed two-phase gasliquid thermal model was merged with Beggs and Brill hydraulic multiphase flow model to predict the overall behavior of two-phase gas-liquid flow, and used to develop an optimal model-based multi-well subsea architecture design. A case study of a four-well subsea system was used to demonstrate the automated subsea architecture optimization technique. Through this case study, it was shown that approximately 23% of savings in pipelines procurement could be made relative to the conventional designing approach. Industry standards, safety factors, and multiphase flow models were used to design jumpers and place the manifold for a subsea multi-well system. Merging hydraulic and thermal multiphase flow models showed the effect of temperature on the flow, which led to an optimized design for the subsea insulation in which issues such as wax deposition can be prevented. The resulting optimized subsea architecture was then implemented in Simscape® environment to obtain the transient response. Along with optimized subsea architecture automated design, the developed thermal model has the potential to be used for real-time prediction of two-phase flow rate, pressure drop and void fraction as virtual sensors to provide economical alternative to expensive and impractical hardware sensors. Furthermore, the developed model can also be used to design effective control strategies for multiphase flow regulation in jumpers and prevention of backflow at the manifold.


Author(s):  
Yifan Gao ◽  
Shan Jin ◽  
Peng Cheng ◽  
Peihua Han ◽  
Yong Bai

Abstract Fiberglass reinforced flexible pipe (FRFP) is a kind of composite thermoplastic pipe, which has many advantages compared to boned flexible pipes. This paper describes an analysis of the mechanical behavior of FRFP under bending. The bending behavior of FRFP was investigated by experimental, analytical and numerical methods. Firstly, this paper presents experimental studies of three 10-layer FRFP in a typical four-point bending test. Curvature-bending moment relations were recorded during the test. Then, based on the nonlinear ring theory and the principle of virtual work, a simplified method was proposed to study the mechanical behavior of FRFP. In addition, a finite element model (FEM) including reinforced layers and high density polyethylene (HDPE) layers was established to simulate the HDPE layers and reinforced layers, respectively. The result of Curvature-bending moment relations obtained from three methods agree well with each other, which proves that the simplified analytical model and FEM are accurate and reliable. The conclusions of this paper could be useful to manufacturing engineers.


Sign in / Sign up

Export Citation Format

Share Document