scholarly journals A systematic approach for evolving byelaws, codes and guidelines in heritage conservation areas: the use of visual simulation techniques

Author(s):  
S. Basu ◽  
A. Mukerji ◽  
V. Chatterjee
Author(s):  
J. He ◽  
J. Liu ◽  
S. Xu ◽  
C. Wu ◽  
J. Zhang

This paper presents a framework of introducing GIS technology to record and analyse cultural heritages in continuous spatial scales. The research team is developing a systematic approach to support heritage conservation research and practice on historical buildings, courtyards, historical towns, and archaeological sites ad landscapes. These studies are conducted not only from the property or site scales, but also investigated from their contexts in setting as well as regional scales. From these continues scales, authenticity and integrity of a heritage can be interpreted from a broader spatial and temporal context, in which GIS would contribute through database, spatial analysis, and visualization. The case study is the construction of a information indexing framework of Dagu Dock industrial heritage to integrate physical buildings, courtyards, natural settings as well as their intangible characteristics which are affiliated to the physical heritage properties and presented through historical, social and culture semantics. The paper illustrates methodology and content of recording physical and social/cultural semantics of culture heritages on different scales as well as connection between different levels of database.


2006 ◽  
Vol 82 (3) ◽  
pp. 395-402 ◽  
Author(s):  
D. Puric-Mladenovic ◽  
S. Strobl

Protected lands form an essential component of landscape planning, and often extend beyond protection of existing natural areas to consider enhancement through restoration to improve existing conditions. We tested an automated conservation science-based methodology and systematic approach to delineate conservation and restoration priority areas on the Oak Ridges Moraine (ORM). The methodology comprised: a) preparing and assembling existing spatial (GIS) information and tessellating the study area to 5-ha hexagon planning units; b) conducting a gap analysis to provide a basis for setting conservation targets that protect, or that through future restoration activities might enhance, under-represented biodiversity elements; and c) applying a simulated annealing procedure (i.e., mathematical algorithm) to find solutions that optimize the set biodiversity targets. The final output of our work is a map of conservation priority area that enables the more than 50 conservation partners in this landscape to coordinate various conservation, stewardship and restoration activities by focusing on those areas that have the highest conservation value. Key words: restoration, settled landscapes, conservation planning, mathematical algorithm


1969 ◽  
Author(s):  
Arthur B. Doty, Jr. ◽  
Richard J. Heintzman ◽  
William C. Steedman ◽  
Richard J. Schiffler

Author(s):  
D.J. Benefiel ◽  
R.S. Weinstein

Intramembrane particles (IMP or MAP) are components of most biomembranes. They are visualized by freeze-fracture electron microscopy, and they probably represent replicas of integral membrane proteins. The presence of MAP in biomembranes has been extensively investigated but their detailed ultrastructure has been largely ignored. In this study, we have attempted to lay groundwork for a systematic evaluation of MAP ultrastructure. Using mathematical modeling methods, we have simulated the electron optical appearances of idealized globular proteins as they might be expected to appear in replicas under defined conditions. By comparing these images with the apearances of MAPs in replicas, we have attempted to evaluate dimensional and shape distortions that may be introduced by the freeze-fracture technique and further to deduce the actual shapes of integral membrane proteins from their freezefracture images.


Author(s):  
M.J. Kim ◽  
Y.L. Chen ◽  
R.W. Carpenter ◽  
J.C. Barry ◽  
G.H. Schwuttke

The structure of grain boundaries (GBs) in metals, semiconductors and ceramics is of considerable interest because of their influence on physical properties. Progress in understanding the structure of grain boundaries at the atomic level has been made by high resolution electron microscopy (HREM) . In the present study, a Σ=13, (510) <001>-tilt grain boundary in silicon was characterized by HREM in conjunction with digital image processing and computer image simulation techniques.The bicrystals were grown from the melt by the Czochralski method, using preoriented seeds. Specimens for TEM observations were cut from the bicrystals perpendicular to the common rotation axis of pure tilt grain boundary, and were mechanically dimpled and then ion-milled to electron transparency. The degree of misorientation between the common <001> axis of the bicrystal was measured by CBED in a Philips EM 400ST/FEG: it was found to be less than 1 mrad. HREM was performed at 200 kV in an ISI-002B and at 400 kv in a JEM-4000EX.


Sign in / Sign up

Export Citation Format

Share Document