scholarly journals Sustainable transport system using renewable energy and efficient electric vehicles

Author(s):  
J. Redgate ◽  
A. Al-Habaibeh ◽  
A. Williams ◽  
M. Kansara
2020 ◽  
Vol 119 (820) ◽  
pp. 317-322
Author(s):  
Michael T. Klare

By transforming patterns of travel and work around the world, the COVID-19 pandemic is accelerating the transition to renewable energy and the decline of fossil fuels. Lockdowns brought car commuting and plane travel to a near halt, and the mass experiment in which white-collar employees have been working from home may permanently reduce energy consumption for business travel. Renewable energy and electric vehicles were already gaining market share before the pandemic. Under pressure from investors, major energy companies have started writing off fossil fuel reserves as stranded assets that are no longer worth the cost of extracting. These shifts may indicate that “peak oil demand” has arrived earlier than expected.


Author(s):  
Mohamad Nassereddine

AbstractRenewable energy sources are widely installed across countries. In recent years, the capacity of the installed renewable network supports large percentage of the required electrical loads. The relying on renewable energy sources to support the required electrical loads could have a catastrophic impact on the network stability under sudden change in weather conditions. Also, the recent deployment of fast charging stations for electric vehicles adds additional load burden on the electrical work. The fast charging stations require large amount of power for short period. This major increase in power load with the presence of renewable energy generation, increases the risk of power failure/outage due to overload scenarios. To mitigate the issue, the paper introduces the machine learning roles to ensure network stability and reliability always maintained. The paper contains valuable information on the data collection devises within the power network, how these data can be used to ensure system stability. The paper introduces the architect for the machine learning algorithm to monitor and manage the installed renewable energy sources and fast charging stations for optimum power grid network stability. Case study is included.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3838
Author(s):  
Marta Borowska-Stefańska ◽  
Michał Kowalski ◽  
Paulina Kurzyk ◽  
Miroslava Mikušová ◽  
Szymon Wiśniewski

The main purpose of this article was to determine the impact on the equilibrium of the local transport system from privileging EVs by permitting them to use bus lanes. The study used two sets of data: information on infrastructure and traffic management; and information on the recorded road network loads and traffic volumes generated by a given shopping centre—the E. Leclerc shopping centre (an important traffic generator within the city of Łódź, Poland). These sets were then used to develop a microsimulation traffic model for the shopping centre and the associated effects on the localised transport system. The model was constructed by means of the PTV Vissim software tool. An initial simulation was conducted that formed a basis for subsequent scenarios (in total, 17 simulations were performed). On the basis of the conducted analyses, it was established that—for the researched part of the transport system—privileging the still rather uncommon battery electric vehicles (BEVs) engendered a marginal deterioration of traffic conditions. At the same time, allowing BEVs to use bus lanes within the chosen research area had no negative impact on bus journey times.


Sign in / Sign up

Export Citation Format

Share Document