scholarly journals Spatial and temporal variation in the water quality of an urban drainage system in Ciudad del Carmen, México

2015 ◽  
Author(s):  
M. del R. Barreto-Castro ◽  
A. Delgado-Estrella ◽  
G. Acevedo-Olvera ◽  
E. Nuñez-Lara
2011 ◽  
Vol 64 (7) ◽  
pp. 1519-1526 ◽  
Author(s):  
A. S. Beenen ◽  
J. G. Langeveld ◽  
H. J. Liefting ◽  
R. H. Aalderink ◽  
H. Velthorst

This paper introduces an integrated approach for the assessment of receiving water quality and the relative contribution of the urban drainage system to perceived receiving water quality problems. The approach combines mass balances with relatively simple receiving water impact models. The research project has learned that the urban drainage system is only one of the determining factors with respect to receiving urban water quality problems. The morphology of the receiving waters and the non-sewer sources of pollution, such as waterbirds, dogs, or inflow of external surface water might be equally important. This conclusion underlines the necessity to changes today's emission based approach and adopt an integral and immission based approach. The integrated approach is illustrated on a case study in Arnhem, where the receiving water quality remained unsatisfactory even after retrofitting a combined sewer system into a separated sewer system.


2021 ◽  
Vol 10 (3) ◽  
pp. e45810313598
Author(s):  
Emmanuel Kennedy da Costa Teixeira ◽  
Letícia Gabriela Andrade Policarpo ◽  
Suely Riciati da Silva ◽  
Eliane Prado Cunha Costa dos Santos

Rainwater harvesting (RWH) is an alternative to the problem of water scarcity. However, its quality must be analyzed before its use, so that it does not represent any danger to the consumer. Thus, the objective of this paper was to analyze the spatial-temporal variation of water quality of rainwater in two cities and observe whether its parameters meet the norm related to the subject. In addition, the concentration of total suspended solids (TSS) that flow into the drainage system was also simulated. Rainwater samples were collected at several points in Congonhas and Ouro Branco - MG, over a period of two years. The results showed that there was spatial-temporal variation in water quality. There were points where the quality met the standard in some moments and did not meet in others, due to its temporal variation. It was also observed that the catchment surface influenced the quality of rainwater, so that the water that came into contact with the roof had its quality deteriorated, at first. However, throughout the rainy event, the quality improved, but at certain times, it was not enough to meet the standard. The rainwater quality simulation, carried out at SWMM, showed high concentrations of TSS, which were higher to that allowed for launching into receiving bodies.


2012 ◽  
Vol 03 (08) ◽  
pp. 915-921 ◽  
Author(s):  
Ishaq S. Eneji ◽  
Agada P. Onuche ◽  
Rufus Sha’Ato

Author(s):  
Santhosh K. M ◽  
S. Prashanth

Urban development, agricultural runoff and industrialization have contributed pollution loading on the environment.  In this study Hemavathi river water from a stretch from its origin point to its sangama was studied for pollution load by determining parameters of water quality like pH, Alkalinity,  Ca, Mg, Nitrate, TDS, BOD, COD , and the results were compared with WHO and BIS standards to draw final conclusion on the quality of water.


1997 ◽  
Vol 36 (5) ◽  
pp. 373-380 ◽  
Author(s):  
C. Fronteau ◽  
W. Bauwens ◽  
P.A. Vanrolleghem

All the parts of an urban drainage system, i.e. the sewer system, the wastewater treatment plant (WWTP) and the river, should be integrated into one single model to assess the performance of the overall system and for the development of design and control strategies assisting in its sustainable and cost effective management. Existing models for the individual components of the system have to be merged in order to develop the integrated tool. One of the problems arising from this methodology is the incompatibility of state variables, processes and parameters used in the different modelling approaches. Optimisation of an urban drainage system, and of the wastewater treatment process in particular, requires a good knowledge of the wastewater composition. As important transformations take place between the emission from the household and the arrival at the treatment facility, sewer models should include these transformations in the sewer system. At present, however, research is still needed in order to increase our knowledge of these in-sewer processes. A comparison of the state variables, processes and parameters has been carried out in both sewer models (SMs) and activated sludge models (ASMs). An ASM approach is used for the description of reactions in sewer models. However, a difference is found in the expression for organic material (expressed in terms of BOD) and heterotrophic biomass is absent as a state variable, resulting in differences in processes and parameters. Reconciliation of both the models seems worthwhile and a preliminary solution is suggested in this paper.


Sign in / Sign up

Export Citation Format

Share Document