scholarly journals Adaptive Graph Guided Embedding for Multi-label Annotation

Author(s):  
Lichen Wang ◽  
Zhengming Ding ◽  
Yun Fu

Multi-label annotation is challenging since a large amount of well-labeled training data are required to achieve promising performance. However, providing such data is expensive while unlabeled data are widely available. To this end, we propose a novel Adaptive Graph Guided Embedding (AG2E) approach for multi-label annotation in a semi-supervised fashion, which utilizes limited labeled data associating with large-scale unlabeled data to facilitate learning performance. Specifically, a multi-label propagation scheme and an effective embedding are jointly learned to seek a latent space where unlabeled instances tend to be well assigned multiple labels. Furthermore, a locality structure regularizer is designed to preserve the intrinsic structure and enhance the multi-label annotation. We evaluate our model in both conventional multi-label learning and zero-shot learning scenario. Experimental results demonstrate that our approach outperforms other compared state-of-the-art methods.

2013 ◽  
Vol 21 (1) ◽  
pp. 113-138 ◽  
Author(s):  
MUHUA ZHU ◽  
JINGBO ZHU ◽  
HUIZHEN WANG

AbstractShift-reduce parsing has been studied extensively for diverse grammars due to the simplicity and running efficiency. However, in the field of constituency parsing, shift-reduce parsers lag behind state-of-the-art parsers. In this paper we propose a semi-supervised approach for advancing shift-reduce constituency parsing. First, we apply the uptraining approach (Petrov, S. et al. 2010. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing (EMNLP), Cambridge, MA, USA, pp. 705–713) to improve part-of-speech taggers to provide better part-of-speech tags to subsequent shift-reduce parsers. Second, we enhance shift-reduce parsing models with novel features that are defined on lexical dependency information. Both stages depend on the use of large-scale unlabeled data. Experimental results show that the approach achieves overall improvements of 1.5 percent and 2.1 percent on English and Chinese data respectively. Moreover, the final parsing accuracies reach 90.9 percent and 82.2 percent respectively, which are comparable with the accuracy of state-of-the-art parsers.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 325
Author(s):  
Zhihao Wu ◽  
Baopeng Zhang ◽  
Tianchen Zhou ◽  
Yan Li ◽  
Jianping Fan

In this paper, we developed a practical approach for automatic detection of discrimination actions from social images. Firstly, an image set is established, in which various discrimination actions and relations are manually labeled. To the best of our knowledge, this is the first work to create a dataset for discrimination action recognition and relationship identification. Secondly, a practical approach is developed to achieve automatic detection and identification of discrimination actions and relationships from social images. Thirdly, the task of relationship identification is seamlessly integrated with the task of discrimination action recognition into one single network called the Co-operative Visual Translation Embedding++ network (CVTransE++). We also compared our proposed method with numerous state-of-the-art methods, and our experimental results demonstrated that our proposed methods can significantly outperform state-of-the-art approaches.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mehdi Srifi ◽  
Ahmed Oussous ◽  
Ayoub Ait Lahcen ◽  
Salma Mouline

AbstractVarious recommender systems (RSs) have been developed over recent years, and many of them have concentrated on English content. Thus, the majority of RSs from the literature were compared on English content. However, the research investigations about RSs when using contents in other languages such as Arabic are minimal. The researchers still neglect the field of Arabic RSs. Therefore, we aim through this study to fill this research gap by leveraging the benefit of recent advances in the English RSs field. Our main goal is to investigate recent RSs in an Arabic context. For that, we firstly selected five state-of-the-art RSs devoted originally to English content, and then we empirically evaluated their performance on Arabic content. As a result of this work, we first build four publicly available large-scale Arabic datasets for recommendation purposes. Second, various text preprocessing techniques have been provided for preparing the constructed datasets. Third, our investigation derived well-argued conclusions about the usage of modern RSs in the Arabic context. The experimental results proved that these systems ensure high performance when applied to Arabic content.


2016 ◽  
Vol 42 (3) ◽  
pp. 391-419 ◽  
Author(s):  
Weiwei Sun ◽  
Xiaojun Wan

From the perspective of structural linguistics, we explore paradigmatic and syntagmatic lexical relations for Chinese POS tagging, an important and challenging task for Chinese language processing. Paradigmatic lexical relations are explicitly captured by word clustering on large-scale unlabeled data and are used to design new features to enhance a discriminative tagger. Syntagmatic lexical relations are implicitly captured by syntactic parsing in the constituency formalism, and are utilized via system combination. Experiments on the Penn Chinese Treebank demonstrate the importance of both paradigmatic and syntagmatic relations. Our linguistically motivated, hybrid approaches yield a relative error reduction of 18% in total over state-of-the-art baselines. Despite the effectiveness to boost accuracy, computationally expensive parsers make hybrid systems inappropriate for many realistic NLP applications. In this article, we are also concerned with improving tagging efficiency at test time. In particular, we explore unlabeled data to transfer the predictive power of hybrid models to simple sequence models. Specifically, hybrid systems are utilized to create large-scale pseudo training data for cheap models. Experimental results illustrate that the re-compiled models not only achieve high accuracy with respect to per token classification, but also serve as a front-end to a parser well.


2020 ◽  
Vol 34 (05) ◽  
pp. 7554-7561
Author(s):  
Pengxiang Cheng ◽  
Katrin Erk

Recent progress in NLP witnessed the development of large-scale pre-trained language models (GPT, BERT, XLNet, etc.) based on Transformer (Vaswani et al. 2017), and in a range of end tasks, such models have achieved state-of-the-art results, approaching human performance. This clearly demonstrates the power of the stacked self-attention architecture when paired with a sufficient number of layers and a large amount of pre-training data. However, on tasks that require complex and long-distance reasoning where surface-level cues are not enough, there is still a large gap between the pre-trained models and human performance. Strubell et al. (2018) recently showed that it is possible to inject knowledge of syntactic structure into a model through supervised self-attention. We conjecture that a similar injection of semantic knowledge, in particular, coreference information, into an existing model would improve performance on such complex problems. On the LAMBADA (Paperno et al. 2016) task, we show that a model trained from scratch with coreference as auxiliary supervision for self-attention outperforms the largest GPT-2 model, setting the new state-of-the-art, while only containing a tiny fraction of parameters compared to GPT-2. We also conduct a thorough analysis of different variants of model architectures and supervision configurations, suggesting future directions on applying similar techniques to other problems.


2020 ◽  
Vol 34 (05) ◽  
pp. 9193-9200
Author(s):  
Shaolei Wang ◽  
Wangxiang Che ◽  
Qi Liu ◽  
Pengda Qin ◽  
Ting Liu ◽  
...  

Most existing approaches to disfluency detection heavily rely on human-annotated data, which is expensive to obtain in practice. To tackle the training data bottleneck, we investigate methods for combining multiple self-supervised tasks-i.e., supervised tasks where data can be collected without manual labeling. First, we construct large-scale pseudo training data by randomly adding or deleting words from unlabeled news data, and propose two self-supervised pre-training tasks: (i) tagging task to detect the added noisy words. (ii) sentence classification to distinguish original sentences from grammatically-incorrect sentences. We then combine these two tasks to jointly train a network. The pre-trained network is then fine-tuned using human-annotated disfluency detection training data. Experimental results on the commonly used English Switchboard test set show that our approach can achieve competitive performance compared to the previous systems (trained using the full dataset) by using less than 1% (1000 sentences) of the training data. Our method trained on the full dataset significantly outperforms previous methods, reducing the error by 21% on English Switchboard.


Author(s):  
Hengyi Cai ◽  
Hongshen Chen ◽  
Yonghao Song ◽  
Xiaofang Zhao ◽  
Dawei Yin

Humans benefit from previous experiences when taking actions. Similarly, related examples from the training data also provide exemplary information for neural dialogue models when responding to a given input message. However, effectively fusing such exemplary information into dialogue generation is non-trivial: useful exemplars are required to be not only literally-similar, but also topic-related with the given context. Noisy exemplars impair the neural dialogue models understanding the conversation topics and even corrupt the response generation. To address the issues, we propose an exemplar guided neural dialogue generation model where exemplar responses are retrieved in terms of both the text similarity and the topic proximity through a two-stage exemplar retrieval model. In the first stage, a small subset of conversations is retrieved from a training set given a dialogue context. These candidate exemplars are then finely ranked regarding the topical proximity to choose the best-matched exemplar response. To further induce the neural dialogue generation model consulting the exemplar response and the conversation topics more faithfully, we introduce a multi-source sampling mechanism to provide the dialogue model with both local exemplary semantics and global topical guidance during decoding. Empirical evaluations on a large-scale conversation dataset show that the proposed approach significantly outperforms the state-of-the-art in terms of both the quantitative metrics and human evaluations.


Author(s):  
Jun Zhou ◽  
Longfei Li ◽  
Ziqi Liu ◽  
Chaochao Chen

Recently, Factorization Machine (FM) has become more and more popular for recommendation systems due to its effectiveness in finding informative interactions between features. Usually, the weights for the interactions are learned as a low rank weight matrix, which is formulated as an inner product of two low rank matrices. This low rank matrix can help improve the generalization ability of Factorization Machine. However, to choose the rank properly, it usually needs to run the algorithm for many times using different ranks, which clearly is inefficient for some large-scale datasets. To alleviate this issue, we propose an Adaptive Boosting framework of Factorization Machine (AdaFM), which can adaptively search for proper ranks for different datasets without re-training. Instead of using a fixed rank for FM, the proposed algorithm will gradually increase its rank according to its performance until the performance does not grow. Extensive experiments are conducted to validate the proposed method on multiple large-scale datasets. The experimental results demonstrate that the proposed method can be more effective than the state-of-the-art Factorization Machines.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jiaxi Ye ◽  
Ruilin Li ◽  
Bin Zhang

Directed fuzzing is a practical technique, which concentrates its testing energy on the process toward the target code areas, while costing little on other unconcerned components. It is a promising way to make better use of available resources, especially in testing large-scale programs. However, by observing the state-of-the-art-directed fuzzing engine (AFLGo), we argue that there are two universal limitations, the balance problem between the exploration and the exploitation and the blindness in mutation toward the target code areas. In this paper, we present a new prototype RDFuzz to address these two limitations. In RDFuzz, we first introduce the frequency-guided strategy in the exploration and improve its accuracy by adopting the branch-level instead of the path-level frequency. Then, we introduce the input-distance-based evaluation strategy in the exploitation stage and present an optimized mutation to distinguish and protect the distance sensitive input content. Moreover, an intertwined testing schedule is leveraged to perform the exploration and exploitation in turn. We test RDFuzz on 7 benchmarks, and the experimental results demonstrate that RDFuzz is skilled at driving the program toward the target code areas, and it is not easily stuck by the balance problem of the exploration and the exploitation.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3603
Author(s):  
Dasol Jeong ◽  
Hasil Park ◽  
Joongchol Shin ◽  
Donggoo Kang ◽  
Joonki Paik

Person re-identification (Re-ID) has a problem that makes learning difficult such as misalignment and occlusion. To solve these problems, it is important to focus on robust features in intra-class variation. Existing attention-based Re-ID methods focus only on common features without considering distinctive features. In this paper, we present a novel attentive learning-based Siamese network for person Re-ID. Unlike existing methods, we designed an attention module and attention loss using the properties of the Siamese network to concentrate attention on common and distinctive features. The attention module consists of channel attention to select important channels and encoder-decoder attention to observe the whole body shape. We modified the triplet loss into an attention loss, called uniformity loss. The uniformity loss generates a unique attention map, which focuses on both common and discriminative features. Extensive experiments show that the proposed network compares favorably to the state-of-the-art methods on three large-scale benchmarks including Market-1501, CUHK03 and DukeMTMC-ReID datasets.


Sign in / Sign up

Export Citation Format

Share Document