scholarly journals Connectionist Temporal Modeling of Video and Language: a Joint Model for Translation and Sign Labeling

Author(s):  
Dan Guo ◽  
Shengeng Tang ◽  
Meng Wang

Online sign interpretation suffers from challenges presented by hybrid semantics learning among sequential variations of visual representations, sign linguistics, and textual grammars. This paper proposes a Connectionist Temporal Modeling (CTM) network for sentence translation and sign labeling. To acquire short-term temporal correlations, a Temporal Convolution Pyramid (TCP) module is performed on 2D CNN features to realize (2D+1D)=pseudo 3D' CNN features. CTM aligns the pseudo 3D' with the original 3D CNN clip features and fuses them. Next, we implement a connectionist decoding scheme for long-term sequential learning. Here, we embed dynamic programming into the decoding scheme, which learns temporal mapping among features, sign labels, and the generated sentence directly. The solution using dynamic programming to sign labeling is considered as pseudo labels. Finally, we utilize the pseudo supervision cues in an end-to-end framework. A joint objective function is designed to measure feature correlation, entropy regularization on sign labeling, and probability maximization on sentence decoding. The experimental results using the RWTH-PHOENIX-Weather and USTC-CSL datasets demonstrate the effectiveness of the proposed approach.

Author(s):  
Lei Zhang ◽  
Yaoyu Li

Energy management is one of the main issues in operating the HPS, which needs to be optimized with respect to the current and future change in generation, demand, and market price, particularly for HPS with strong renewable penetration. Optimal energy management strategies such as dynamic programming (DP) may become significantly suboptimal under strong uncertainty in prediction of renewable generation and utility price. In order to reduce the impact of such uncertainties, a two-scale dynamic programming scheme is proposed in this study to optimize the operational benefit based on multi-scale prediction. First, a macro-scale dynamic programming (MASDP) is performed for the long term period, based on long term ahead prediction of hourly electricity price and wind energy (speed). The battery state-of-charge (SOC) is thus obtained as the macro-scale reference trajectory. The micro-scale dynamic programming (MISDP) is then applied with a short term interval, based on short term-hour ahead auto-regressive moving average (ARMA) prediction of hourly electricity price and wind energy. The nodal SOC values from the MASDP result are used as the terminal condition for the MISDP. The simulation results show that the proposed method can significantly decrease the operation cost, as compared with the single scale DP method.


2015 ◽  
Vol 785 ◽  
pp. 521-525
Author(s):  
Siti Mariam Mohd Shokri ◽  
Nofri Yenita Dahlan ◽  
Norlee Husnafeza Ahmad

This paper presents findings from optimization of a long-term generation mix for Malaysia electricity power supply using Dynamic Programming (DP) technique. The optimization is modelled to minimize the total costs as the objective function subjects to demand and policy constraints. . Several technologies have been used for generation candidates such as coal, gas and nuclear. The model has been tested on a generation portfolio based on Malaysia power system. Result shows that a balance generation mix for Malaysia in 2030 will be 30% is from coal, 31.6% from gas, 17.5% from nuclear, 6.8% from hydro and 14% from RE.


2020 ◽  
Author(s):  
Francois Rerolle ◽  
Emily Dantzer ◽  
Andrew A. Lover ◽  
John M. Marshall ◽  
Bouasy Hongvanthong ◽  
...  

AbstractAs countries in the Greater Mekong Sub-region (GMS) increasingly focus their malaria control and elimination efforts on forest-going populations, greater understanding of the relationship between deforestation and malaria incidence will be essential for programs to assess and meet their 2030 elimination goals. Leveraging village-level health facility surveillance data and forest cover data in a spatio-temporal modeling framework, we found evidence that deforestation is associated with short-term increases, but long-term decreases in confirmed malaria case incidence in Lao People’s Democratic Republic (Lao PDR). We identified strong associations with deforestation measured within 30 km of villages but not with deforestation in the near (10 km) and immediate (1 km) vicinity. Results appear driven by deforestation in densely forested areas and were more pronounced for infections with Plasmodium falciparum (P. falciparum) than for Plasmodium vivax (P. vivax). These findings highlight the influence of forest-going populations on malaria transmission in the GMS.


Author(s):  
Lei Bai ◽  
Lina Yao ◽  
Salil S. Kanhere ◽  
Xianzhi Wang ◽  
Quan Z. Sheng

Multi-step passenger demand forecasting is a crucial task in on-demand vehicle sharing services. However, predicting passenger demand is generally challenging due to the nonlinear and dynamic spatial-temporal dependencies. In this work, we propose to model multi-step citywide passenger demand prediction based on a graph and use a hierarchical graph convolutional structure to capture both spatial and temporal correlations simultaneously. Our model consists of three parts: 1) a long-term encoder to encode historical passenger demands; 2) a short-term encoder to derive the next-step prediction for generating multi-step prediction; 3) an attention-based output module to model the dynamic temporal and channel-wise information. Experiments on three real-world datasets show that our model consistently outperforms many baseline methods and state-of-the-art models.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Francois Rerolle ◽  
Emily Dantzer ◽  
Andrew A Lover ◽  
John M Marshall ◽  
Bouasy Hongvanthong ◽  
...  

As countries in the Greater Mekong Sub-region (GMS) increasingly focus their malaria control and elimination efforts on reducing forest-related transmission, greater understanding of the relationship between deforestation and malaria incidence will be essential for programs to assess and meet their 2030 elimination goals. Leveraging village-level health facility surveillance data and forest cover data in a spatio-temporal modeling framework, we found evidence that deforestation is associated with short-term increases, but long-term decreases confirmed malaria case incidence in Lao People’s Democratic Republic (Lao PDR). We identified strong associations with deforestation measured within 30 km of villages but not with deforestation in the near (10 km) and immediate (1 km) vicinity. Results appear driven by deforestation in densely forested areas and were more pronounced for infections with Plasmodium falciparum (P. falciparum) than for Plasmodium vivax (P. vivax). These findings highlight the influence of forest activities on malaria transmission in the GMS.


Author(s):  
Dan Guo ◽  
Shuo Wang ◽  
Qi Tian ◽  
Meng Wang

The sign language translation (SLT) which aims at translating a sign language video into natural language is a weakly supervised task, given that there is no exact mapping relationship between visual actions and textual words in a sentence label. To align the sign language actions and translate them into the respective words automatically, this paper proposes a dense temporal convolution network, termed DenseTCN which captures the actions in hierarchical views. Within this network, a temporal convolution (TC) is designed to learn the short-term correlation among adjacent features and further extended to a dense hierarchical structure. In the kth TC layer, we integrate the outputs of all preceding layers together: (1) The TC in a deeper layer essentially has larger receptive fields, which captures long-term temporal context by the hierarchical content transition. (2) The integration addresses the SLT problem by different views, including embedded short-term and extended longterm sequential learning. Finally, we adopt the CTC loss and a fusion strategy to learn the featurewise classification and generate the translated sentence. The experimental results on two popular sign language benchmarks, i.e. PHOENIX and USTCConSents, demonstrate the effectiveness of our proposed method in terms of various measurements.


2016 ◽  
Vol 39 ◽  
Author(s):  
Mary C. Potter

AbstractRapid serial visual presentation (RSVP) of words or pictured scenes provides evidence for a large-capacity conceptual short-term memory (CSTM) that momentarily provides rich associated material from long-term memory, permitting rapid chunking (Potter 1993; 2009; 2012). In perception of scenes as well as language comprehension, we make use of knowledge that briefly exceeds the supposed limits of working memory.


Author(s):  
D.E. Loudy ◽  
J. Sprinkle-Cavallo ◽  
J.T. Yarrington ◽  
F.Y. Thompson ◽  
J.P. Gibson

Previous short term toxicological studies of one to two weeks duration have demonstrated that MDL 19,660 (5-(4-chlorophenyl)-2,4-dihydro-2,4-dimethyl-3Hl, 2,4-triazole-3-thione), an antidepressant drug, causes a dose-related thrombocytopenia in dogs. Platelet counts started to decline after two days of dosing with 30 mg/kg/day and continued to decrease to their lowest levels by 5-7 days. The loss in platelets was primarily of the small discoid subpopulation. In vitro studies have also indicated that MDL 19,660: does not spontaneously aggregate canine platelets and has moderate antiaggregating properties by inhibiting ADP-induced aggregation. The objectives of the present investigation of MDL 19,660 were to evaluate ultrastructurally long term effects on platelet internal architecture and changes in subpopulations of platelets and megakaryocytes.Nine male and nine female beagle dogs were divided equally into three groups and were administered orally 0, 15, or 30 mg/kg/day of MDL 19,660 for three months. Compared to a control platelet range of 353,000- 452,000/μl, a doserelated thrombocytopenia reached a maximum severity of an average of 135,000/μl for the 15 mg/kg/day dogs after two weeks and 81,000/μl for the 30 mg/kg/day dogs after one week.


2020 ◽  
Vol 29 (4) ◽  
pp. 710-727
Author(s):  
Beula M. Magimairaj ◽  
Naveen K. Nagaraj ◽  
Alexander V. Sergeev ◽  
Natalie J. Benafield

Objectives School-age children with and without parent-reported listening difficulties (LiD) were compared on auditory processing, language, memory, and attention abilities. The objective was to extend what is known so far in the literature about children with LiD by using multiple measures and selective novel measures across the above areas. Design Twenty-six children who were reported by their parents as having LiD and 26 age-matched typically developing children completed clinical tests of auditory processing and multiple measures of language, attention, and memory. All children had normal-range pure-tone hearing thresholds bilaterally. Group differences were examined. Results In addition to significantly poorer speech-perception-in-noise scores, children with LiD had reduced speed and accuracy of word retrieval from long-term memory, poorer short-term memory, sentence recall, and inferencing ability. Statistically significant group differences were of moderate effect size; however, standard test scores of children with LiD were not clinically poor. No statistically significant group differences were observed in attention, working memory capacity, vocabulary, and nonverbal IQ. Conclusions Mild signal-to-noise ratio loss, as reflected by the group mean of children with LiD, supported the children's functional listening problems. In addition, children's relative weakness in select areas of language performance, short-term memory, and long-term memory lexical retrieval speed and accuracy added to previous research on evidence-based areas that need to be evaluated in children with LiD who almost always have heterogenous profiles. Importantly, the functional difficulties faced by children with LiD in relation to their test results indicated, to some extent, that commonly used assessments may not be adequately capturing the children's listening challenges. Supplemental Material https://doi.org/10.23641/asha.12808607


Sign in / Sign up

Export Citation Format

Share Document