Optimal Energy Management of Hybrid Power System With Two-Scale Dynamic Programming

Author(s):  
Lei Zhang ◽  
Yaoyu Li

Energy management is one of the main issues in operating the HPS, which needs to be optimized with respect to the current and future change in generation, demand, and market price, particularly for HPS with strong renewable penetration. Optimal energy management strategies such as dynamic programming (DP) may become significantly suboptimal under strong uncertainty in prediction of renewable generation and utility price. In order to reduce the impact of such uncertainties, a two-scale dynamic programming scheme is proposed in this study to optimize the operational benefit based on multi-scale prediction. First, a macro-scale dynamic programming (MASDP) is performed for the long term period, based on long term ahead prediction of hourly electricity price and wind energy (speed). The battery state-of-charge (SOC) is thus obtained as the macro-scale reference trajectory. The micro-scale dynamic programming (MISDP) is then applied with a short term interval, based on short term-hour ahead auto-regressive moving average (ARMA) prediction of hourly electricity price and wind energy. The nodal SOC values from the MASDP result are used as the terminal condition for the MISDP. The simulation results show that the proposed method can significantly decrease the operation cost, as compared with the single scale DP method.

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3039 ◽  
Author(s):  
Luu An ◽  
Tran Tuan

With the dramatic development of renewable energy resources all over the world, Vietnam has started to apply them along with the conventional resources to produce the electrical power in recent years. Visually, the aim of this action is to improve the economic as well as the environmental benefits. Therefore, a vast of hybrid systems that combine Wind turbine, Photovoltaic (PV), Diesel generator and battery have been considered with different configurations. According to this topic, there are lots of research trends in the literature. However, we aim to the optimal energy management of this hybrid system. In particular, in this paper, we propose an optimization method to deal with it. The interesting point of the proposed method is the usage of the information of sources, loads, and electricity market as an embedded forecast step to enhance the effectiveness of the actual operation via minimizing the operation cost by scheduling distributed energy resources (DER) while regarding emission reduction in the hybrid system is considered as the objective function. In this optimization problem, the constraints are determined by two terms, namely: the balance of power between the supply and the load demand, and also the limitations of each DER. Thus, to solve this problem, we make use of the dynamic programming (DP) to transform a system into a multi-stage decision procedure with respect to the state of charge (SOC), resulting in the minimum system cost (CS). In order to highlight the pros of the proposed method, we implement the comparison to a rule-based method in the same context. The simulation results are examined in order to evaluate the effectiveness of the developed methodology, which is a so-called global optimization.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 228 ◽  
Author(s):  
Aman Kalia ◽  
Brian Fabien

Extended range electric vehicles (EREVs) operate both as an electric vehicle (EV) and as a hybrid electric vehicle (HEV). As a hybrid, the on-board range extender (REx) system provides additional energy to increase the feasible driving range. In this paper, we evaluate an experimental research EREV based on the 2016 Chevrolet Camaro platform for optimal energy management control. We use model-in-loop and software-in-loop environments to validate the data-driven power loss model of the research vehicle. A discussion on the limitations of conventional energy management control algorithms is presented. We then propose our algorithm derived from adaptive real-time dynamic programming (ARTDP) with a distance constraint for energy consumption optimization. To achieve a near real-time functionality, the algorithm recomputes optimal parameters by monitoring the energy storage system’s (ESS) state of charge deviations from the previously computed optimal trajectory. The proposed algorithm is adaptable to variability resulting from driving behavior or system limitations while maintaining the target driving range. The net energy consumption evaluation shows a maximum improvement of 9.8% over the conventional charge depleting/charge sustaining (CD/CS) algorithm used in EREVs. Thus, our proposed algorithm shows adaptability and fault tolerance while being close to the global optimal solution.


2019 ◽  
Vol 33 (34) ◽  
pp. 1950424
Author(s):  
Fan Wang ◽  
Jia-Jun Li

In this paper, we performed a work combining numerical and theoretical studies to investigate the optimal energy-management of two cylinders under flow-induced motion using dynamic programming. First, we considered the energy generation of two freely oscillated cylinders with different configurations at Reynolds number of 200. Then, we constructed a theoretical model to maximize the energy-harvesting capacity of two cylinders using dynamic programming. This work can provide helpful suggestions for designing the energy-harvesting apparatus.


Sign in / Sign up

Export Citation Format

Share Document