scholarly journals Minimizing Time-to-Rank: A Learning and Recommendation Approach

Author(s):  
Haoming Li ◽  
Sujoy Sikdar ◽  
Rohit Vaish ◽  
Junming Wang ◽  
Lirong Xia ◽  
...  

Consider the following problem faced by an online voting platform: A user is provided with a list of alternatives, and is asked to rank them in order of preference using only drag-and-drop operations. The platform's goal is to recommend an initial ranking that minimizes the time spent by the user in arriving at her desired ranking. We develop the first optimization framework to address this problem, and make theoretical as well as practical contributions. On the practical side, our experiments on the Amazon Mechanical Turk platform provide two interesting insights about user behavior: First, that users' ranking strategies closely resemble selection or insertion sort, and second, that the time taken for a drag-and-drop operation depends linearly on the number of positions moved. These insights directly motivate our theoretical model of the optimization problem. We show that computing an optimal recommendation is NP-hard, and provide exact and approximation algorithms for a variety of special cases of the problem. Experimental evaluation on MTurk shows that, compared to a random recommendation strategy, the proposed approach reduces the (average) time-to-rank by up to 50%.

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2775
Author(s):  
Tsubasa Takano ◽  
Takumi Nakane ◽  
Takuya Akashi ◽  
Chao Zhang

In this paper, we propose a method to detect Braille blocks from an egocentric viewpoint, which is a key part of many walking support devices for visually impaired people. Our main contribution is to cast this task as a multi-objective optimization problem and exploits both the geometric and the appearance features for detection. Specifically, two objective functions were designed under an evolutionary optimization framework with a line pair modeled as an individual (i.e., solution). Both of the objectives follow the basic characteristics of the Braille blocks, which aim to clarify the boundaries and estimate the likelihood of the Braille block surface. Our proposed method was assessed by an originally collected and annotated dataset under real scenarios. Both quantitative and qualitative experimental results show that the proposed method can detect Braille blocks under various environments. We also provide a comprehensive comparison of the detection performance with respect to different multi-objective optimization algorithms.


Author(s):  
Jing Tang ◽  
Xueyan Tang ◽  
Andrew Lim ◽  
Kai Han ◽  
Chongshou Li ◽  
...  

Monotone submodular maximization with a knapsack constraint is NP-hard. Various approximation algorithms have been devised to address this optimization problem. In this paper, we revisit the widely known modified greedy algorithm. First, we show that this algorithm can achieve an approximation factor of 0.405, which significantly improves the known factors of 0.357 given by Wolsey and (1-1/e)/2\approx 0.316 given by Khuller et al. More importantly, our analysis closes a gap in Khuller et al.'s proof for the extensively mentioned approximation factor of (1-1/\sqrte )\approx 0.393 in the literature to clarify a long-standing misconception on this issue. Second, we enhance the modified greedy algorithm to derive a data-dependent upper bound on the optimum. We empirically demonstrate the tightness of our upper bound with a real-world application. The bound enables us to obtain a data-dependent ratio typically much higher than 0.405 between the solution value of the modified greedy algorithm and the optimum. It can also be used to significantly improve the efficiency of algorithms such as branch and bound.


2021 ◽  
Vol 74 ◽  
pp. 101728
Author(s):  
Carolyn M. Ritchey ◽  
Toshikazu Kuroda ◽  
Jillian M. Rung ◽  
Christopher A. Podlesnik

2011 ◽  
Vol 37 (2) ◽  
pp. 413-420 ◽  
Author(s):  
Karën Fort ◽  
Gilles Adda ◽  
K. Bretonnel Cohen

2015 ◽  
Vol 16 (S1) ◽  
Author(s):  
John WG Seamons ◽  
Marconi S Barbosa ◽  
Jonathan D Victor ◽  
Dominique Coy ◽  
Ted Maddess

Author(s):  
F. Jurčíček ◽  
S. Keizer ◽  
Milica Gašić ◽  
François Mairesse ◽  
B. Thomson ◽  
...  

2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Christian E. Lopez ◽  
Scarlett R. Miller ◽  
Conrad S. Tucker

The objective of this work is to explore the possible biases that individuals may have toward the perceived functionality of machine generated designs, compared to human created designs. Toward this end, 1187 participants were recruited via Amazon mechanical Turk (AMT) to analyze the perceived functional characteristics of both human created two-dimensional (2D) sketches and sketches generated by a deep learning generative model. In addition, a computer simulation was used to test the capability of the sketched ideas to perform their intended function and explore the validity of participants' responses. The results reveal that both participants and computer simulation evaluations were in agreement, indicating that sketches generated via the deep generative design model were more likely to perform their intended function, compared to human created sketches used to train the model. The results also reveal that participants were subject to biases while evaluating the sketches, and their age and domain knowledge were positively correlated with their perceived functionality of sketches. The results provide evidence that supports the capabilities of deep learning generative design tools to generate functional ideas and their potential to assist designers in creative tasks such as ideation.


Sign in / Sign up

Export Citation Format

Share Document