scholarly journals Augmenting Transfer Learning with Semantic Reasoning

Author(s):  
Freddy Lécué ◽  
Jiaoyan Chen ◽  
Jeff Z. Pan ◽  
Huajun Chen

Transfer learning aims at building robust prediction models by transferring knowledge gained from one problem to another. In the semantic Web, learning tasks are enhanced with semantic representations. We exploit their semantics to augment transfer learning by dealing with when to transfer with semantic measurements and what to transfer with semantic embeddings. We further present a general framework that integrates the above measurements and embeddings with existing transfer learning algorithms for higher performance. It has demonstrated to be robust in two real-world applications: bus delay forecasting and air quality forecasting.

Author(s):  
Wen Xu ◽  
Jing He ◽  
Yanfeng Shu

Transfer learning is an emerging technique in machine learning, by which we can solve a new task with the knowledge obtained from an old task in order to address the lack of labeled data. In particular deep domain adaptation (a branch of transfer learning) gets the most attention in recently published articles. The intuition behind this is that deep neural networks usually have a large capacity to learn representation from one dataset and part of the information can be further used for a new task. In this research, we firstly present the complete scenarios of transfer learning according to the domains and tasks. Secondly, we conduct a comprehensive survey related to deep domain adaptation and categorize the recent advances into three types based on implementing approaches: fine-tuning networks, adversarial domain adaptation, and sample-reconstruction approaches. Thirdly, we discuss the details of these methods and introduce some typical real-world applications. Finally, we conclude our work and explore some potential issues to be further addressed.


Author(s):  
Bambang Krismono Triwijoyo

The face is a challenging object to be recognized and analyzed automatically by a computer in many interesting applications such as facial gender classification. The large visual variations of faces, such as occlusions, pose changes, and extreme lightings, impose great challenge for these tasks in real world applications. This paper explained the fast transfer learning representations through use of convolutional neural network (CNN) model for gender classification from face image. Transfer learning aims to provide a framework to utilize previously-acquired knowledge to solve new but similar problems much more quickly and effectively. The experimental results showed that the transfer learning method have faster and higher accuracy than CNN network without transfer learning.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Dipendra Jha ◽  
Kamal Choudhary ◽  
Francesca Tavazza ◽  
Wei-keng Liao ◽  
Alok Choudhary ◽  
...  

AbstractThe current predictive modeling techniques applied to Density Functional Theory (DFT) computations have helped accelerate the process of materials discovery by providing significantly faster methods to scan materials candidates, thereby reducing the search space for future DFT computations and experiments. However, in addition to prediction error against DFT-computed properties, such predictive models also inherit the DFT-computation discrepancies against experimentally measured properties. To address this challenge, we demonstrate that using deep transfer learning, existing large DFT-computational data sets (such as the Open Quantum Materials Database (OQMD)) can be leveraged together with other smaller DFT-computed data sets as well as available experimental observations to build robust prediction models. We build a highly accurate model for predicting formation energy of materials from their compositions; using an experimental data set of $$1,643$$1,643 observations, the proposed approach yields a mean absolute error (MAE) of $$0.07$$0.07 eV/atom, which is significantly better than existing machine learning (ML) prediction modeling based on DFT computations and is comparable to the MAE of DFT-computation itself.


Author(s):  
Fei Mi ◽  
Boi Faltings

Increasing concerns with privacy have stimulated interests in Session-based Recommendation (SR) using no personal data other than what is observed in the current browser session. Existing methods are evaluated in static settings which rarely occur in real-world applications. To better address the dynamic nature of SR tasks, we study an incremental SR scenario, where new items and preferences appear continuously. We show that existing neural recommenders can be used in incremental SR scenarios with small incremental updates to alleviate computation overhead and catastrophic forgetting. More importantly, we propose a general framework called Memory Augmented Neural model (MAN). MAN augments a base neural recommender with a continuously queried and updated nonparametric memory, and the predictions from the neural and the memory components are combined through another lightweight gating network. We empirically show that MAN is well-suited for the incremental SR task, and it consistently outperforms state-oft-he-art neural and nonparametric methods. We analyze the results and demonstrate that it is particularly good at incrementally learning preferences on new and infrequent items.


Sign in / Sign up

Export Citation Format

Share Document