scholarly journals CuCo: Graph Representation with Curriculum Contrastive Learning

Author(s):  
Guanyi Chu ◽  
Xiao Wang ◽  
Chuan Shi ◽  
Xunqiang Jiang

Graph-level representation learning is to learn low-dimensional representation for the entire graph, which has shown a large impact on real-world applications. Recently, limited by expensive labeled data, contrastive learning based graph-level representation learning attracts considerable attention. However, these methods mainly focus on graph augmentation for positive samples, while the effect of negative samples is less explored. In this paper, we study the impact of negative samples on learning graph-level representations, and a novel curriculum contrastive learning framework for self-supervised graph-level representation, called CuCo, is proposed. Specifically, we introduce four graph augmentation techniques to obtain the positive and negative samples, and utilize graph neural networks to learn their representations. Then a scoring function is proposed to sort negative samples from easy to hard and a pacing function is to automatically select the negative samples in each training procedure. Extensive experiments on fifteen graph classification real-world datasets, as well as the parameter analysis, well demonstrate that our proposed CuCo yields truly encouraging results in terms of performance on classification and convergence.

2020 ◽  
Vol 2 (3) ◽  
pp. 153-159
Author(s):  
Dr. V. Suma

There has been an increasing demand in the e-commerce market for refurbished products across India during the last decade. Despite these demands, there has been very little research done in this domain. The real-world business environment, market factors and varying customer behavior of the online market are often ignored in the conventional statistical models evaluated by existing research work. In this paper, we do an extensive analysis of the Indian e-commerce market using data-mining approach for prediction of demand of refurbished electronics. The impact of the real-world factors on the demand and the variables are also analyzed. Real-world datasets from three random e-commerce websites are considered for analysis. Data accumulation, processing and validation is carried out by means of efficient algorithms. Based on the results of this analysis, it is evident that highly accurate prediction can be made with the proposed approach despite the impacts of varying customer behavior and market factors. The results of analysis are represented graphically and can be used for further analysis of the market and launch of new products.


Author(s):  
Pengyong Li ◽  
Jun Wang ◽  
Ziliang Li ◽  
Yixuan Qiao ◽  
Xianggen Liu ◽  
...  

Self-supervised learning has gradually emerged as a powerful technique for graph representation learning. However, transferable, generalizable, and robust representation learning on graph data still remains a challenge for pre-training graph neural networks. In this paper, we propose a simple and effective self-supervised pre-training strategy, named Pairwise Half-graph Discrimination (PHD), that explicitly pre-trains a graph neural network at graph-level. PHD is designed as a simple binary classification task to discriminate whether two half-graphs come from the same source. Experiments demonstrate that the PHD is an effective pre-training strategy that offers comparable or superior performance on 13 graph classification tasks compared with state-of-the-art strategies, and achieves notable improvements when combined with node-level strategies. Moreover, the visualization of learned representation revealed that PHD strategy indeed empowers the model to learn graph-level knowledge like the molecular scaffold. These results have established PHD as a powerful and effective self-supervised learning strategy in graph-level representation learning.


2021 ◽  
Author(s):  
Yingheng Wang ◽  
Yaosen Min ◽  
Erzhuo Shao ◽  
Ji Wu

ABSTRACTLearning generalizable, transferable, and robust representations for molecule data has always been a challenge. The recent success of contrastive learning (CL) for self-supervised graph representation learning provides a novel perspective to learn molecule representations. The most prevailing graph CL framework is to maximize the agreement of representations in different augmented graph views. However, existing graph CL frameworks usually adopt stochastic augmentations or schemes according to pre-defined rules on the input graph to obtain different graph views in various scales (e.g. node, edge, and subgraph), which may destroy topological semantemes and domain prior in molecule data, leading to suboptimal performance. Therefore, designing parameterized, learnable, and explainable augmentation is quite necessary for molecular graph contrastive learning. A well-designed parameterized augmentation scheme can preserve chemically meaningful structural information and intrinsically essential attributes for molecule graphs, which helps to learn representations that are insensitive to perturbation on unimportant atoms and bonds. In this paper, we propose a novel Molecular Graph Contrastive Learning with Parameterized Explainable Augmentations, MolCLE for brevity, that self-adaptively incorporates chemically significative information from both topological and semantic aspects of molecular graphs. Specifically, we apply deep neural networks to parameterize the augmentation process for both the molecular graph topology and atom attributes, to highlight contributive molecular substructures and recognize underlying chemical semantemes. Comprehensive experiments on a variety of real-world datasets demonstrate that our proposed method consistently outperforms compared baselines, which verifies the effectiveness of the proposed framework. Detailedly, our self-supervised MolCLE model surpasses many supervised counterparts, and meanwhile only uses hundreds of thousands of parameters to achieve comparative results against the state-of-the-art baseline, which has tens of millions of parameters. We also provide detailed case studies to validate the explainability of augmented graph views.CCS CONCEPTS• Mathematics of computing → Graph algorithms; • Applied computing → Bioinformatics; • Computing methodologies → Neural networks; Unsupervised learning.


Author(s):  
Jing Huang ◽  
Jie Yang

Hypergraph, an expressive structure with flexibility to model the higher-order correlations among entities, has recently attracted increasing attention from various research domains. Despite the success of Graph Neural Networks (GNNs) for graph representation learning, how to adapt the powerful GNN-variants directly into hypergraphs remains a challenging problem. In this paper, we propose UniGNN, a unified framework for interpreting the message passing process in graph and hypergraph neural networks, which can generalize general GNN models into hypergraphs. In this framework, meticulously-designed architectures aiming to deepen GNNs can also be incorporated into hypergraphs with the least effort. Extensive experiments have been conducted to demonstrate the effectiveness of UniGNN on multiple real-world datasets, which outperform the state-of-the-art approaches with a large margin. Especially for the DBLP dataset, we increase the accuracy from 77.4% to 88.8% in the semi-supervised hypernode classification task. We further prove that the proposed message-passing based UniGNN models are at most as powerful as the 1-dimensional Generalized Weisfeiler-Leman (1-GWL) algorithm in terms of distinguishing non-isomorphic hypergraphs. Our code is available at https://github.com/OneForward/UniGNN.


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1149
Author(s):  
Thapana Boonchoo ◽  
Xiang Ao ◽  
Qing He

Motivated by the proliferation of trajectory data produced by advanced GPS-enabled devices, trajectory is gaining in complexity and beginning to embroil additional attributes beyond simply the coordinates. As a consequence, this creates the potential to define the similarity between two attribute-aware trajectories. However, most existing trajectory similarity approaches focus only on location based proximities and fail to capture the semantic similarities encompassed by these additional asymmetric attributes (aspects) of trajectories. In this paper, we propose multi-aspect embedding for attribute-aware trajectories (MAEAT), a representation learning approach for trajectories that simultaneously models the similarities according to their multiple aspects. MAEAT is built upon a sentence embedding algorithm and directly learns whole trajectory embedding via predicting the context aspect tokens when given a trajectory. Two kinds of token generation methods are proposed to extract multiple aspects from the raw trajectories, and a regularization is devised to control the importance among aspects. Extensive experiments on the benchmark and real-world datasets show the effectiveness and efficiency of the proposed MAEAT compared to the state-of-the-art and baseline methods. The results of MAEAT can well support representative downstream trajectory mining and management tasks, and the algorithm outperforms other compared methods in execution time by at least two orders of magnitude.


2020 ◽  
Author(s):  
Mikel Joaristi

Unsupervised Graph Representation Learning methods learn a numerical representation of the nodes in a graph. The generated representations encode meaningful information about the nodes' properties, making them a powerful tool for tasks in many areas of study, such as social sciences, biology or communication networks. These methods are particularly interesting because they facilitate the direct use of standard Machine Learning models on graphs. Graph representation learning methods can be divided into two main categories depending on the information they encode, methods preserving the nodes connectivity information, and methods preserving nodes' structural information. Connectivity-based methods focus on encoding relationships between nodes, with neighboring nodes being closer together in the resulting latent space. On the other hand, structure-based methods generate a latent space where nodes serving a similar structural function in the network are encoded close to each other, independently of them being connected or even close to each other in the graph. While there are a lot of works that focus on preserving nodes' connectivity information, only a few works study the problem of encoding nodes' structure, specially in an unsupervised way. In this dissertation, we demonstrate that properly encoding nodes' structural information is fundamental for many real-world applications, as it can be leveraged to successfully solve many tasks where connectivity-based methods fail. One concrete example is presented first. In this example, the task consists of detecting malicious entities in a real-world financial network. We show that to solve this problem, connectivity information is not enough and show how leveraging structural information provides considerable performance improvements. This particular example pinpoints the need for further research on the area of structural graph representation learning, together with the limitations of the previous state-of-the-art. We use the acquired knowledge as a starting point and inspiration for the research and development of three independent unsupervised structural graph representation learning methods: Structural Iterative Representation learning approach for Graph Nodes (SIR-GN), Structural Iterative Lexicographic Autoencoded Node Representation (SILA), and Sparse Structural Node Representation (SparseStruct). We show how each of our methods tackles specific limitations on the previous state-of-the-art on structural graph representation learning such as scalability, representation meaning, and lack of formal proof that guarantees the preservation of structural properties. We provide an extensive experimental section where we compare our three proposed methods to the current state-of-the-art on both connectivity-based and structure-based representation learning methods. Finally, in this dissertation, we look at extensions of the basic structural graph representation learning problem. We study the problem of temporal structural graph representation. We also provide a method for representation explainability.


GigaScience ◽  
2019 ◽  
Vol 8 (8) ◽  
Author(s):  
Muhammad Zohaib Anwar ◽  
Anders Lanzen ◽  
Toke Bang-Andreasen ◽  
Carsten Suhr Jacobsen

Abstract Background Metatranscriptomics has been used widely for investigation and quantification of microbial communities’ activity in response to external stimuli. By assessing the genes expressed, metatranscriptomics provides an understanding of the interactions between different major functional guilds and the environment. Here, we present a de novo assembly-based Comparative Metatranscriptomics Workflow (CoMW) implemented in a modular, reproducible structure. Metatranscriptomics typically uses short sequence reads, which can either be directly aligned to external reference databases (“assembly-free approach”) or first assembled into contigs before alignment (“assembly-based approach”). We also compare CoMW (assembly-based implementation) with an assembly-free alternative workflow, using simulated and real-world metatranscriptomes from Arctic and temperate terrestrial environments. We evaluate their accuracy in precision and recall using generic and specialized hierarchical protein databases. Results CoMW provided significantly fewer false-positive results, resulting in more precise identification and quantification of functional genes in metatranscriptomes. Using the comprehensive database M5nr, the assembly-based approach identified genes with only 0.6% false-positive results at thresholds ranging from inclusive to stringent compared with the assembly-free approach, which yielded up to 15% false-positive results. Using specialized databases (carbohydrate-active enzyme and nitrogen cycle), the assembly-based approach identified and quantified genes with 3–5 times fewer false-positive results. We also evaluated the impact of both approaches on real-world datasets. Conclusions We present an open source de novo assembly-based CoMW. Our benchmarking findings support assembling short reads into contigs before alignment to a reference database because this provides higher precision and minimizes false-positive results.


2020 ◽  
Vol 34 (04) ◽  
pp. 7007-7014
Author(s):  
Shichao Zhu ◽  
Lewei Zhou ◽  
Shirui Pan ◽  
Chuan Zhou ◽  
Guiying Yan ◽  
...  

Graph Neural Networks (GNNs) have achieved state-of-the-art performance in many graph data analysis tasks. However, they still suffer from two limitations for graph representation learning. First, they exploit non-smoothing node features which may result in suboptimal embedding and degenerated performance for graph classification. Second, they only exploit neighbor information but ignore global topological knowledge. Aiming to overcome these limitations simultaneously, in this paper, we propose a novel, flexible, and end-to-end framework, Graph Smoothing Splines Neural Networks (GSSNN), for graph classification. By exploiting the smoothing splines, which are widely used to learn smoothing fitting function in regression, we develop an effective feature smoothing and enhancement module Scaled Smoothing Splines (S3) to learn graph embedding. To integrate global topological information, we design a novel scoring module, which exploits closeness, degree, as well as self-attention values, to select important node features as knots for smoothing splines. These knots can be potentially used for interpreting classification results. In extensive experiments on biological and social datasets, we demonstrate that our model achieves state-of-the-arts and GSSNN is superior in learning more robust graph representations. Furthermore, we show that S3 module is easily plugged into existing GNNs to improve their performance.


Author(s):  
Hong Yang ◽  
Ling Chen ◽  
Minglong Lei ◽  
Lingfeng Niu ◽  
Chuan Zhou ◽  
...  

Discrete network embedding emerged recently as a new direction of network representation learning. Compared with traditional network embedding models, discrete network embedding aims to compress model size and accelerate model inference by learning a set of short binary codes for network vertices. However, existing discrete network embedding methods usually assume that the network structures (e.g., edge weights) are readily available. In real-world scenarios such as social networks, sometimes it is impossible to collect explicit network structure information and it usually needs to be inferred from implicit data such as information cascades in the networks. To address this issue, we present an end-to-end discrete network embedding model for latent networks DELN that can learn binary representations from underlying information cascades. The essential idea is to infer a latent Weisfeiler-Lehman proximity matrix that captures node dependence based on information cascades and then to factorize the latent Weisfiler-Lehman matrix under the binary node representation constraint. Since the learning problem is a mixed integer optimization problem, an efficient maximal likelihood estimation based cyclic coordinate descent (MLE-CCD) algorithm is used as the solution. Experiments on real-world datasets show that the proposed model outperforms the state-of-the-art network embedding methods.


2020 ◽  
Vol 2 (2) ◽  
pp. 101-110
Author(s):  
Dr. Suma V.

There has been an increasing demand in the e-commerce market for refurbished products across India during the last decade. Despite these demands, there has been very little research done in this domain. The real-world business environment, market factors and varying customer behavior of the online market are often ignored in the conventional statistical models evaluated by existing research work. In this paper, we do an extensive analysis of the Indian e-commerce market using data-mining approach for prediction of demand of refurbished electronics. The impact of the real-world factors on the demand and the variables are also analyzed. Real-world datasets from three random e-commerce websites are considered for analysis. Data accumulation, processing and validation is carried out by means of efficient algorithms. Based on the results of this analysis, it is evident that highly accurate prediction can be made with the proposed approach despite the impacts of varying customer behavior and market factors. The results of analysis are represented graphically and can be used for further analysis of the market and launch of new products.


Sign in / Sign up

Export Citation Format

Share Document