scholarly journals The Effects of Media Coverage on the Dynamics of Disease in Prey-Predator Model

2021 ◽  
pp. 981-996
Author(s):  
Walaa Madhat Alwan ◽  
Huda Abdul Satar

In this paper, an eco-epidemiological model with media coverage effects is established and studied. An -type of disease in predator is considered.  All the properties of the solution of the proposed model are discussed. An application to the stability theory was carried out to investigate the local as well as global stability of the system. The persistence conditions of the model are determined. The occurrence of local bifurcation in the model is studied. Further investigation of the global dynamics of the model is achieved through using a numerical simulation.

2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Dahlia Khaled Bahlool ◽  
Huda Abdul Satar ◽  
Hiba Abdullah Ibrahim

In this paper, a mathematical model consisting of a prey-predator system incorporating infectious disease in the prey has been proposed and analyzed. It is assumed that the predator preys upon the nonrefugees prey only according to the modified Holling type-II functional response. There is a harvesting process from the predator. The existence and uniqueness of the solution in addition to their bounded are discussed. The stability analysis of the model around all possible equilibrium points is investigated. The persistence conditions of the system are established. Local bifurcation analysis in view of the Sotomayor theorem is carried out. Numerical simulation has been applied to investigate the global dynamics and specify the effect of varying the parameters. It is observed that the system has a chaotic dynamics.


2020 ◽  
pp. 1146-1163
Author(s):  
Hiba Abdullah Ibrahim ◽  
Raid Kamel Naji

A prey-predator model with Michael Mentence type of predator harvesting and infectious disease in prey is studied. The existence, uniqueness and boundedness of the solution of the model are investigated. The dynamical behavior of the system is studied locally as well as globally. The persistence conditions of the system are established. Local bifurcation near each of the equilibrium points is investigated. Finally, numerical simulations are given to show our obtained analytical results.


2021 ◽  
pp. 4930-4952
Author(s):  
Wassan Hussein ◽  
Huda Abdul Satar

In this paper, an eco-epidemiological model with media coverage effect is proposed and studied. A prey-predator model with modified Leslie-Gower and functional response is studied. An  -type of disease in prey is considered.  The existence, uniqueness and boundedness of the solution of the model are discussed. The local and global stability of this system are carried out. The conditions for the persistence of all species are established. The local bifurcation in the model is studied. Finally, numerical simulations are conducted to illustrate the analytical results.


2020 ◽  
pp. 139-146
Author(s):  
Nabaa Hassain Fakhry ◽  
Raid Kamel Naji

An ecological model consisting of prey-predator system involving the prey’s fear is proposed and studied. It is assumed that the predator species consumed the prey according to prey square root type of functional response. The existence, uniqueness and boundedness of the solution are examined. All the possible equilibrium points are determined. The stability analysis of these points is investigated along with the persistence of the system. The local bifurcation analysis is carried out. Finally, this paper is ended with a numerical simulation to understand the global dynamics of the system.


Author(s):  
Huda Abdul Satar ◽  
Raid Kamel Naji

In this paper a prey-predator-scavenger food web model is proposed and studied. It is assumed that the model considered the effect of harvesting and all the species are infected by some toxicants released by some other species. The stability analysis of all possible equilibrium points is discussed. The persistence conditions of the system are established. The occurrence of local bifurcation around the equilibrium points is investigated. Numerical simulation is used and the obtained solution curves are drawn to illustrate the results of the model. Finally, the nonexistence of periodic dynamics is discussed analytically as well as numerically.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Raid Kamel Naji ◽  
Salam Jasim Majeed

We proposed and analyzed a mathematical model dealing with two species of prey-predator system. It is assumed that the prey is a stage structure population consisting of two compartments known as immature prey and mature prey. It has a refuge capability as a defensive property against the predation. The existence, uniqueness, and boundedness of the solution of the proposed model are discussed. All the feasible equilibrium points are determined. The local and global stability analysis of them are investigated. The occurrence of local bifurcation (such as saddle node, transcritical, and pitchfork) near each of the equilibrium points is studied. Finally, numerical simulations are given to support the analytic results.


2012 ◽  
Vol 2012 ◽  
pp. 1-24 ◽  
Author(s):  
Raid Kamel Naji ◽  
Arkan N. Mustafa

This paper treats the dynamical behavior of eco-epidemiological model with nonlinear incidence rate. A Holling type II prey-predator model withSI-type of disease in prey has been proposed and analyzed. The existence, uniqueness, and boundedness of the solution of the system are studied. The local and global dynamical behaviors are investigated. The conditions, which guarantee the occurring of Hopf bifurcation of the system, are established. Finally, further investigations for the global dynamics of the proposed system are carried out with the help of numerical simulations.


2019 ◽  
pp. 1766-1782
Author(s):  
Lina Shihab Ahmed ◽  
Hassan Fadhil AL- Husseiny

An eco-epidemic model is proposed in this paper. It is assumed that there is a stage structure in prey and disease in predator. Existence, uniqueness and bounded-ness of the solution for the system are studied. The existence of each possible steady state points is discussed. The local condition for stability near each steady state point is investigated. Finally, global dynamics of the proposed model is studied numerically.


Author(s):  
Rehab Noori Shalan ◽  
Shireen R. Jawad ◽  
Alaa Hussien Lafta

This paper discusses the discrete stage–structure prey-predator model involved in the Beddington–DeAngelis type of functional response described by differential equation systems proposed as three-dimensional systems. Furthermore, the predators are divided into two types of populations, namely, mature and immature, along with the prey population. The stability of all possible fixed points is demonstrated by solving our proposed model analytically using the standard lemma and topological properties, which give all possible properties to each fixed point. In the same manner, we identify three fixed points, which are as follows: the origin fixed point, which means there are no species; the axial fixed point, which means the prey population increases logistically with the absence of a predator one (mature and immature populations); and the positive fixed point, which signifies the coexistence of all species. We show that the numerical simulations part is used not only to plot the time series of fixed values, but also, to find and illustrate the theoretical results.


2022 ◽  
Vol 19 (3) ◽  
pp. 2835-2852
Author(s):  
Cunjuan Dong ◽  
◽  
Changcheng Xiang ◽  
Wenjin Qin ◽  
Yi Yang ◽  
...  

<abstract><p>In the process of spreading infectious diseases, the media accelerates the dissemination of information, and people have a deeper understanding of the disease, which will significantly change their behavior and reduce the disease transmission; it is very beneficial for people to prevent and control diseases effectively. We propose a Filippov epidemic model with nonlinear incidence to describe media's influence in the epidemic transmission process. Our proposed model extends existing models by introducing a threshold strategy to describe the effects of media coverage once the number of infected individuals exceeds a threshold. Meanwhile, we perform the stability of the equilibriua, boundary equilibrium bifurcation, and global dynamics. The system shows complex dynamical behaviors and eventually stabilizes at the equilibrium points of the subsystem or pseudo equilibrium. In addition, numerical simulation results show that choosing appropriate thresholds and control intensity can stop infectious disease outbreaks, and media coverage can reduce the burden of disease outbreaks and shorten the duration of disease eruptions.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document