Experimental study of change in physical and mechanical properties of anthracite under temperature exposure

Author(s):  
P. N. Ivanov ◽  
D. I. Blokhin ◽  
I. M. Zakorshmennyy
2010 ◽  
Vol 168-170 ◽  
pp. 916-919
Author(s):  
Ke Fei Liu

Epoxy asphalt has fundamentally changed the thermoplastic of asphalt and endowed the asphalt with excellent physical and mechanical properties. This paper analyses the developing technical requirement of thermosetting epoxy asphalt and points out its main problems during preparation and application process. Aiming at the steel deck paving characteristics, the author has independently developed epoxy asphalt binder and tested its performances, the results have showed that this binder can meet the basic requirement of various pavings, and its further research are in process.


2020 ◽  
Vol 322 ◽  
pp. 01001
Author(s):  
Dana Konakova ◽  
Eva Vejmelkova ◽  
Lenka Scheinherrova ◽  
Martin Keppert ◽  
An Cheng ◽  
...  

Basic physical and mechanical properties of several cement composites are determined as functions of thermal load and the results are compared with reference materials. Bulk density, matrix density, and open porosity are measured using the water vacuum saturation method. Compressive and bending strengths are determined according to the European standard. High-temperature coefficient of thermal expansion is obtained using a comparative measurement. Experimental results show that composites based on Portland cement do not resist high temperatures well. Their applicability is limited to 400 °C, due to the damage caused by hydrates decomposition. On the other hand, composites based on calcium aluminate cement exhibit a better thermal stability and retain residual strength even after being exposed to 1000 °C.


2019 ◽  
Vol 40 (8) ◽  
pp. 3140-3148
Author(s):  
Xuelong Fu ◽  
Zhengbo Ji ◽  
Wei Lin ◽  
Wei Liu ◽  
Yuebin Lin ◽  
...  

2010 ◽  
Vol 168-170 ◽  
pp. 1426-1431
Author(s):  
Zhi Qing Li ◽  
Zhen Dong Cui ◽  
Yan Ping Wang ◽  
Li Chao Wang ◽  
Duo Zhong

According to the typical loess in Shuozhou in Shanxi province, tests involved in compaction characteristics, shearing strength characteristics and disintegration are carried out by using loess and three kinds of improved loess, namely lime and fly-ash, lime and cement, cement and fly-ash. The best improved soil method is selected. The test results indicate that the compact hybrid structure is formed by fly ash and loess. The activity of fly ash is activated as a result of the lime mixing. A series of hydration reaction prompt the intensity of modified loess. And the physical and mechanical properties of improved loess are improved noticeably.


2018 ◽  
Vol 2018 (1) ◽  
pp. 000602-000605
Author(s):  
Tomofumi Watanabe ◽  
Keisuke Tanaka ◽  
Masafumi Takesue

Abstract Microstructural and mechanical properties of a pressureless sintered silver material were measured. The Microstructure of the pressureless sintered silver material had pores of less than 1 μm in size and some silver matrices sintered with nanoparticles between each other. The pressureless sintered silver material could be bonded on bare copper without applying an external pressure. After subjecting the material to a high temperature exposure test at 250 °C and for 1000 h, it showed no substantial change in microstructure and showed a constant Young's modulus of 14 GPa. The pressureless sintered silver material in this work did not show any embrittlement or increase in pore size after the high temperature exposure test, which demonstrated that the material has reliable physical and mechanical properties at temperatures up to 250 °C.


Sign in / Sign up

Export Citation Format

Share Document