scholarly journals Effects of Ratios of NO3 to NH4 and Concentrations of each N Source in the Nutrient Solution on Growth and Leaf N Constituents of Vegetable Crops and Solution pH

1983 ◽  
Vol 52 (2) ◽  
pp. 159-166 ◽  
Author(s):  
Hideo IKEDA ◽  
Takaya OSAWA
1997 ◽  
Vol 20 (10) ◽  
pp. 1391-1401 ◽  
Author(s):  
A. M. G. Antunes ◽  
M. Antonieta Nunes

Helia ◽  
2001 ◽  
Vol 24 (34) ◽  
pp. 121-130
Author(s):  
Arshad Ali ◽  
M. Salim Badr-u-Zaman ◽  
Rahmatullah Badr-u-Zaman

SUMMARY A hydroponic study was conducted to investigate the influence of Ca supply on K+/Na+ selectivity of sunflower at 0, 75 and 150 mM NaCl in root medium. Sunflower (Helianthus annuus L. cv. Hysun-33) seeds were germinated in moist quartz sand and twelve-day old seedlings were foam-plugged in lids of plastic pots each containing 2.5 l of continuously aerated half strength Hoagland's nutrient solution without calcium salts. The solution pH was adjusted to 5.9 by adding HCl and NaOH. There were three salinity levels (0, 75 and 150 mM NaCl) and two calcium levels (5 and 10 mM CaCl2). The experiment was organized in a randomized complete block design (RCBD) in three replicates. At low concentration of calcium (5 mM), sunflower growth decreased drastically with increasing concentration of NaCl in nutrient solution. On the other hand, plants grown in high concentration of NaCl experienced less damage with relatively higher concentration of calcium. At relatively higher concentration of calcium (10 mM Ca), sunflower plants absorbed and translocated relatively more potassium and less sodium, than at low concentration of calcium (5 mM Ca), demonstrating the positive role of calcium in alleviating the hazardous effects of salinity on sunflower growth.


2021 ◽  
pp. 103898
Author(s):  
Panayiota Xylia ◽  
Antonios Chrysargyris ◽  
George Botsaris ◽  
Panagiotis Skandamis ◽  
Nikolaos Tzortzakis

HortScience ◽  
2001 ◽  
Vol 36 (6) ◽  
pp. 1061-1065 ◽  
Author(s):  
B.R. Bondada ◽  
J.P. Syvertsen ◽  
L.G. Albrigo

Foliar-applied urea nitrogen (N) has potential to become an important component in fertilizer programs for citrus in Florida and other citrus growing areas as it can reduce nitrate leaching into ground water. We evaluated seasonal absorption characteristics of three urea formulations, Triazone-urea, liquid urea, and spray grade urea by citrus leaves that were from 2 weeks to 6 months old. The effect of leaf age on 15N absorption by N-deficient and N-sufficient leaves, together with urea absorption over an eight-week period were studied using greenhouse-grown and field-grown plants. All foliar N applications were based on a recommended rate of 34 kg N/ha in 469 L of water. In the field studies, leaf N was increased similarly by the three urea formulations one week after three weekly applications. Young leaves (0.25 month and 1 month old) absorbed a greater percentage of N than the older leaves (3 month and 6 month old). Epicuticular wax concentration increased and 15N absorption declined with leaf age. Nitrogen deficient leaves (1.80% N) had greater wax concentration and lower N absorption than N sufficient leaves (2.60% N). Four to 8 weeks after urea applications, Triazone-urea sprayed leaves had significantly greater leaf N concentration than leaves sprayed with liquid urea or nonsprayed control leaves. The greenhouse studies revealed that the 15N absorption was greater through abaxial leaf surfaces than through adaxial surfaces regardless of leaf N level and application time. Applying foliar 15N-urea during night (2000 hr to 2200 hr) resulted in greater absorption of 15N than in the morning (0800 hr to 1000 hr) or afternoon (1200 hr to 1400 hr). It is clear that maximum N absorption from foliar urea sprays occurred at night through the abaxial surfaces of young leaves with sufficient N. Triazone-urea acted as a slow-release N source that could be exploited in supplying N over an extended period of time.


2011 ◽  
Vol 8 (6) ◽  
pp. 11311-11335 ◽  
Author(s):  
E. Gioseffi ◽  
A. de Neergaard ◽  
J. K. Schjoerring

Abstract. Soil-borne amino acids may constitute a nitrogen (N) source for plants in various terrestrial ecosystems but their importance for total N nutrition is unclear, particularly in nutrient-rich arable soils. One reason for this uncertainty is lack of information on how the absorption of amino acids by plant roots is affected by the simultaneous presence of inorganic N forms. The objective of the present study was to study absorption of glycine (Gly) and glutamine (Gln) by wheat roots and their interactions with nitrate (NO3–) and (NH4+) during uptake. The underlying hypothesis was that amino acids, when present in nutrient solution together with inorganic N, may lead to down-regulation of the inorganic N uptake. Amino acids were enriched with double-labelled 15N and 13C, while NO3– and NH4+ acquisition was determined by their rate of removal from the nutrient solution surrounding the roots. The uptake rates of NO3– and NH4+ did not differ from each other and were about twice as high as the uptake rate of organic N when the different N forms were supplied separately in concentrations of 2 mM. Nevertheless, replacement of 50 % of the inorganic N with organic N was able to restore the N uptake to the same level as that in the presence of only inorganic N. Co-provision of NO3– did not affect glycine uptake, while the presence of glycine down-regulated NO3– uptake. The ratio between 13C and 15N were lower in shoots than in roots and also lower than the theoretical values, reflecting higher C losses via respiratory processes compared to N losses. It is concluded that organic N can constitute a significant N-source for wheat plants and that there is an interaction between the uptake of inorganic and organic nitrogen.


HortScience ◽  
2004 ◽  
Vol 39 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Jong-Goo Kang ◽  
Marc W. van Iersel

To evaluate the effects of nutrient concentration and pH of the fertilizer solution on growth and nutrient uptake of salvia (Salvia splendens F. Sellow ex Roem. & Schult. `Scarlet Sage'), we grew plants with five different concentrations of Hoagland nutrient solution [0.125, 0.25, 0.5, 1.0, and 2.0× full strength; electrical conductivity (EC) of 0.4, 0.7, 1.1, 2.0, and 3.7 dS·m-1, respectively]. In a concurrent experiment, plants were subirrigated with modified Hoagland solution at 0.5× concentration and one of five solution pH values: 4.4, 5.4, 6.4, 7.2, and 8.0. Shoot and total dry weight and leaf area increased greatly with increasing nutrient solution concentrations from 0.125 to 1.0×, while leaf photosynthesis (Pn), transpiration, and stomatal conductance decreased with increasing nutrient solution concentrations. Treatment effects on growth apparently were caused by changes in carbon allocation within the plants. Shoot: root ratio and leaf area ratio increased with increasing fertilizer concentration. Plants flowered 8 days later at low concentrations of nutrient solution than at high concentrations. Shoot tissue concentrations of N, P, K, and B increased, while C, Al, Mo, and Na decreased with increasing concentration of the nutrient solution. The pH of the nutrient solution had no effect on the growth or gas exchange of the plants, while its effects on nutrient concentration in the shoot tissue generally were smaller than those of fertilizer concentration. These results indicate that 1.0 to 2.0× concentrations of Hoagland solution result in maximum growth, apparently because the plants produce leaf area more efficiently at high fertilizer concentrations.


2005 ◽  
Vol 15 (3) ◽  
pp. 565-571 ◽  
Author(s):  
C. Jasso-Chaverria ◽  
G.J. Hochmuth ◽  
R.C. Hochmuth ◽  
S.A. Sargent

Two greenhouse cucumber (Cucumis sativus) cultivars with differing fruit types [European (`Bologna') and Beit-alpha (`Sarig')] were grown during two seasons in a perlite medium in black plastic nursery containers in a passively ventilated greenhouse in northern Florida to evaluate fruiting responses to nitrogen (N) fertilization over the range of 75 to 375 mg·L–1. Fruit production, consisting mostly of fancy fruits, increased quadratically with N concentration in the nutrient solution, leveling off above 225 mg·L–1 for both cucumber cultivars. Fruit length and diameter were not affected by N concentration in the nutrient solution. Leaf N concentration, averaged over three sampling dates, increased linearly with N concentration in the nutrient solution from 46 g·kg–1 with 75 mg·L–1 N to 50 g·kg–1 with 375 mg·L–1 N. Fruit firmness decreased with increasing N concentration and there was little difference in firmness between the two cultivars. Firmness was similar across three measurement dates during the spring harvest season, but increased during the season in the fall. Fruit color responses to N concentration were dependent on the specific combination of experiment, sampling date, and cultivar. For most combinations of experiment, sampling date, and cultivar, cucumber epidermal color was greener (higher hue angle) with increased N concentration. The color was darkest (lowest L* value) and most intense (highest chroma value) with intermediate to higher N concentrations.


Sign in / Sign up

Export Citation Format

Share Document