scholarly journals Vine Water Relations and Quality of ‘Muscat of Alexandria’ Table Grapes Subjected to Partial Root-zone Drying and Regulated Deficit Irrigation

2007 ◽  
Vol 76 (1) ◽  
pp. 13-19 ◽  
Author(s):  
Diaa Osama El-Ansary ◽  
Goro Okamoto
Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 22
Author(s):  
Abdelmalek Temnani ◽  
María R. Conesa ◽  
Manuel Ruiz ◽  
Juan A. López ◽  
Pablo Berríos ◽  
...  

For three consecutive years (2015–2017), two deficit irrigation (DI) strategies were used in a 12-year old vineyard (cv. ‘Crimson Seedless’) to implement a sustainable irrigation protocol according to the available water for the farmer. Four different irrigation treatments were assessed: (i) Control (CTL), irrigated to satisfy the maximum crop water requirements throughout the entire growing season; two DI treatments irrigated as CTL except during post-veraison, when the vines were irrigated at 50% CTL: (ii) Regulated Deficit Irrigation (RDI); and (iii) Partial Root Drying (PRD), alternating the wet and dry sides of the root zone, and (iv) irrigated according to the criteria followed by the farmer (FARM), and conditioned by the availability of water each season. The DI strategies resulted in a 50% increase in water use efficiency in the first two years and 81% during the third year. Weekly deficit irrigation protocols are proposed, which specify a maximum difference of 0.22 MPa of midday stem water potential with respect to well-watered vines for a range of irrigation water availabilities between 4000 and 7000 m3 ha−1. An applied water prediction model based on the Gaussian regression using day of the year and maximum temperature of the day is also proposed.


Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 423 ◽  
Author(s):  
Puglisi ◽  
Nicolosi ◽  
Vanella ◽  
Piero ◽  
Stagno ◽  
...  

The article presents the results of research consisting of the application of deficit irrigation (DI) criteria, combined with the adoption of micro-irrigation methods, on orange orchards (Citrus sinensis (L.) Osbeck) in Sicily (Italy) during the irrigation season of 2015. Regulated deficit irrigation (RDI, T3) and partial root-zone drying (PRD, T4) strategies were compared with full irrigation (T1) and sustained deficit irrigation (SDI, T2) treatments in terms of physiological, biochemical, and productive crop response. A geophysical survey (electrical resistivity tomography, ERT) was carried out to identify a link between the percentages of drying soil volume in T4 with leaves abscisic acid (ABA) signal. Results highlight that the orange trees physiological response to water stress conditions did not show particular differences among the different irrigation treatments, not inducing detrimental effects on crop production features. ABA levels in leaves were rather constant in all the treatments, except in T4 during late irrigation season. ERT technique identified that prolonged drying cycles during alternate PRD exposed more roots to severe soil drying, thus increasing leaf ABA accumulation.


2020 ◽  
Vol 261 ◽  
pp. 108994 ◽  
Author(s):  
Luis Noguera-Artiaga ◽  
Paola Sánchez-Bravo ◽  
Francisca Hernández ◽  
Armando Burgos-Hernández ◽  
David Pérez-López ◽  
...  

2014 ◽  
Vol 95 (12) ◽  
pp. 2510-2520 ◽  
Author(s):  
Maria R Conesa ◽  
Jose M de la Rosa ◽  
Francisco Artés-Hernández ◽  
Ian C Dodd ◽  
Rafael Domingo ◽  
...  

2017 ◽  
Vol 35 (3) ◽  
pp. 350-356 ◽  
Author(s):  
Adriana Carolina Moreno-Hernández ◽  
Javier Enrique Vélez-Sánchez ◽  
Diego Sebastiano Intrigliolo

Crop demands for irrigation require different technologies to optimize the use of water. Regulated Deficit Irrigation (RDI) is a strategy that enables a significant reduction of water application without affecting the crop yield and quality, with the advantage of being a tool for control of vegetative growth. The present study was conducted in Sesquile, Cundinamarca (Colombia) between 2015 and 2016. The objective was to evaluate the quality and development of pear crop (Pyrus communis L. cv. Triumph of Vienna) on field conditions, using three treatments of 100%, and 25% of water requirement (ETc) and no irrigation, applied at the rapid fruit growth stage. The mid day stem water potential, plant water relations, pressure-volume curve, fruit yield and quality were evaluated. There were no significant differences in the yield and quality of the fruits among the different irrigation treatments. The trees had the mechanisms of osmotic adjustment, which allowed water stressed trees to cope with irrigation restrictions during the rapid fruit growth stage without affecting the yield.


Sign in / Sign up

Export Citation Format

Share Document