scholarly journals Investigating the Local Stress of Car Deck Ro-Ro 5000 GT

2021 ◽  
Vol 4 (1) ◽  
pp. 57-62
Author(s):  
Alamsyah Alamsyah ◽  
Ahmed Reza Falevi ◽  
Amalia Ika Wulandari ◽  
Muhammad Uswah Pawara ◽  
Wira Setiawan ◽  
...  

A deck construction must be strong enough that it will not suffer structural damage if it works under a given load. In this case the strain stress becomes very important from the strength of the deck, as for one that affects the strength of the deck construction, one of which is the stiffener distance. This study aims to analyze the maximum strain stress on the deck of the Ferry Ro - ro. The method used is Finite Element Method (FEM) by varying the stiffener distance in the deck construction. The research results obtained, namely the variation of the stiffener distance of 600 mm. 285.5 N/mm2 and the maximum strain released is 1.76 x 10-3 mm, at a variation of 700 mm stiffener distance the maximum stress released is 378,075 N/mm2 and the maximum strain released is 1.77 x 10-3 mm, at a stiffener distance variation 800 mm the maximum stress released is 383,737 N/mm2 and the maximum strain released is 1.78 x -3 mm, at 900 mm stiffener distance variations the maximum stress is 389,188 N/mm2 and the maximum strain released is 1.79 x 10-3 mm, at variations in distance stiffener 1000 mm the maximum stress released is 425,388 N/mm2 and the maximum strain released is 1.8 x 10 -3 mm, The value of strain increasingly increases followed by the farther distance of the stiffener equal 0.6%, and the stress value is at a variation increasingly increases followed by the farther distance of the stiffener equal 12.24%.

2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Alamsyah Alamsyah ◽  
Septiany Tri Pangestu ◽  
Amalia Ika Wulandari

Ro-Ro type trans ships have a Car Deck which is useful for accommodating cargo in the form of vehicles. The construction of the deck must be strong enough so that it does not suffer structural damage when working with a certain load. In this case the stress strain becomes very important as an element of deck strength. As for what affects the strength of the deck construction, one of which is the stiffener distance. This purpose of research to determine the response of the car deck structure with variations in stiffener distance to the stress-strain value. The method used is the Finite Element Method. The results of detected the maximum stress value at a stiffener distance of 550 mm 325.471 N/mm2 with a maximum strain of 3.33 x 10-2 mm, for a stiffener distance of 650 mm the maximum stress was 407.521 N/mm2 and a maximum strain of 3.35 x 10-2 mm, a stiffener distance of 750 mm the maximum stress generated is 444.129 N/mm2 with a maximum strain of 3.36 x 10-3 mm, a stiffener distance of 850 mm, the maximum stress generated is 448.469 N/mm2 with a maximum strain of 3.43 x 10-3 mm. For a stiffener distance of 950 mm, the maximum stress is 452.567 N/mm2 with a maximum strain of 3.53 x 10-3 mm.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 606
Author(s):  
Tengteng Li ◽  
Maosen Cao ◽  
Jianle Li ◽  
Lei Yang ◽  
Hao Xu ◽  
...  

The attempt to integrate the applications of conventional structural deformation reconstruction strategies and vibration-based damage identification methods is made in this study, where, more specifically, the inverse finite element method (iFEM) and pseudo-excitation approach (PE) are combined for the first time, to give rise to a novel structural health monitoring (SHM) framework showing various advantages, particularly in aspects of enhanced adaptability and robustness. As the key component of the method, the inverse finite element method (iFEM) enables precise reconstruction of vibration displacements based on measured dynamic strains, which, as compared to displacement measurement, is much more adaptable to existing on-board SHM systems in engineering practice. The PE, on the other hand, is applied subsequently, relying on the reconstructed displacements for the identification of structural damage. Delamination zones in a carbon fibre reinforced plastic (CFRP) laminate are identified using the developed method. As demonstrated by the damage detection results, the iFEM-PE method possesses apparently improved accuracy and significantly enhanced noise immunity compared to the original PE approach depending on displacement measurement. Extensive parametric study is conducted to discuss the influence of a variety of factors on the effectiveness and accuracy of damage identification, including the influence of damage size and position, measurement density, sensor layout, vibration frequency and noise level. It is found that different factors are highly correlated and thus should be considered comprehensively to achieve optimal detection results. The application of the iFEM-PE method is extended to better adapt to the structural operational state, where multiple groups of vibration responses within a wide frequency band are used. Hybrid data fusion is applied to process the damage index (DI) constructed based on the multiple responses, leading to detection results capable of indicating delamination positions precisely.


2003 ◽  
Vol 125 (3) ◽  
pp. 363-371 ◽  
Author(s):  
Padmanabhan Seshaiyer ◽  
Jay D. Humphrey

Quantification of the mechanical behavior of hyperelastic membranes in their service configuration, particularly biological tissues, is often challenging because of the complicated geometry, material heterogeneity, and nonlinear behavior under finite strains. Parameter estimation thus requires sophisticated techniques like the inverse finite element method. These techniques can also become difficult to apply, however, if the domain and boundary conditions are complex (e.g. a non-axisymmetric aneurysm). Quantification can alternatively be achieved by applying the inverse finite element method over sub-domains rather than the entire domain. The advantage of this technique, which is consistent with standard experimental practice, is that one can assume homogeneity of the material behavior as well as of the local stress and strain fields. In this paper, we develop a sub-domain inverse finite element method for characterizing the material properties of inflated hyperelastic membranes, including soft tissues. We illustrate the performance of this method for three different classes of materials: neo-Hookean, Mooney Rivlin, and Fung-exponential.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Alamsyah Alam ◽  
A. B. Mapangandro ◽  
Amalia Ika W ◽  
M U Pawara

Ro - Ro Ferry is equipped with a connecting door between the port and the ship. The ramp door experiences load during loading and discharging of the rolling cargo. This repetitive load may cause fatigue failure. The structure of the ramp door should withstand this load. Therefore, The ramp door should be properly designed to ensure the structural integrity of the ramp door. The purpose of this research is to analyze the maximum stress and the Fatigue life of the bow ramp door. The method used is the finite element method. The given loads are several types of vehicles that are commonly transported by the ship. The given load case is the point load working at the girder plate and between the girder plate. Based on the simulation results with the given point load, the maximum stress is identified located between the girder for the large truck case with 397.02 MPa, while the minimum stress located at the girder for sedan car with 43.93 MPa. As for the fatigue life of the bow ramp door construction. it is 1.17 ~ 398.64 years, and the load cycle is 5.35 x 104 ~ 9.05 x 106 cycle. Keywords : Bow Ramp Door; Stress; Fatigue Life; Finite Element; Ferry


2016 ◽  
Vol 28 (3) ◽  
Author(s):  
Widia Hafsyah Sumarlina Ritonga ◽  
Janti Rusjanti ◽  
Nunung Rusminah ◽  
Aldilla Miranda ◽  
Tatacipta Dirgantara

Introduction: The surgical procedure of dental implant comprising one stage surgery for the non-submerged implant design and two stages for submerged. Submerged design is frequently used in Faculty of Dentistry Padjadjaran University as it is safer in achieving osseointegration. This study has been carried out to evaluate resistant capacity of an implant component design submerged against failure based on location and the value of internal stress during the application of mastication force using the 3D Finite Element Method (FEM). Methods: The present study used a CBCT radiograph of the mandibular patient and Micro CT Scan of one submerged implant. Radiograph image was then converted into a digital model of 3D computerized finite element, subsequently inputted the material properties and boundary condition with 87N occlusion load applied and about 29N for the shear force. Results: The maximum stress was found located at the contact area between the implant and alveolar crest with stress value registered up to 193.31MPa located within an implant body where is understandable that this value is far below allowable strength of titanium alloy of 860 MPa. Conclusion: The location of the maximum stress was located on the contact area between the implant-abutment and alveolar crest. This implant design is acceptable and no failure observed under mastication load.


2012 ◽  
Vol 271-272 ◽  
pp. 1291-1295
Author(s):  
Cai Jun Liu

By use of finite element method to analyze the strength of 6-wing synchronous rotor, and illustrate the change of parameters regarding strain, stress and displacement etc. so as to visually see whether the designed rotor will reach the design requirements; meanwhile, through structural analysis, to provide guidance for the further optimization of designing for 6-wing synchronous rotor.


2013 ◽  
Vol 586 ◽  
pp. 202-205 ◽  
Author(s):  
Milos Milosevic ◽  
Nenad Mitrovic ◽  
Vesna Miletić ◽  
Uroš Tatic ◽  
Andrea Ezdenci

Local polymerization stress occurs due to polymerization shrinkage of resin based composites adhesively bonded to tooth tissues. Shrinkage causes local displacements of cavity walls, with possible occurrence of micro-cracks in the enamel, dentin and/or material itself. In order to design a cavity for experimental testing of polymerization shrinkage of dental composites using 3D optical analysis, in this paper finite element method (FEM) was used to analyze numerical models with different cavity radiuses. 3D optical strain and displacement analysis of composite materials and cavity walls is limited by equipment sensitivity i.e. 0.01% for strain and 1 micron for displacement. This paper presents the development of 3D computer premolar models with varying cavity radiuses, and local stress, strain and displacement analysis using FEM. Model verification was performed by comparing obtained results with data from the scientific literature. Using the FEM analysis of local strains, displacements and stresses exerted on cavity walls, it was concluded that the model with 1 mm radius was optimal for experimental optical 3D displacement analysis.


2013 ◽  
Vol 816-817 ◽  
pp. 695-697
Author(s):  
Mei Huang ◽  
Hao Yuan ◽  
Juan Ma ◽  
J.N. Tang

In this article, finite element method is used to analyze the random vibration of the pressure vessel under the action of earthquake. The result shows that the maximum stress values are located at the bottom of the pressure vessel. At the same time, fatigue in this location has been analyzed. It can come to a conclusion that this pressure vessel meets the requirement of fatigue strength.


2020 ◽  
Vol 17 (6) ◽  
pp. 579-587
Author(s):  
Kunlapat THONGKAEW ◽  
Thanwit NAEMSAI

Over the years, plastic water bottle manufacturing, especially PET (Polyethylene terephthalate) bottle has been steadily increasing due to its toughness, transparency, and chemical properties. However, most manufacturers have to spare time, and cost, verifying their prototypes in accordance to the Thai Industrial Standard (TIS) before any mass production can start. This paper aims to overcome some of these problems by using Finite Element Method (FEM) to study bottle mechanical properties, particularly maximum stress and deformation that can be employed to evaluate performance and optimal thickness. From simulation results the optimal thickness of a 6-liter bottle, that its maximum stress can still be kept under critical value, is 0.45 mm. The thinner and lighter bottle reduces the amount of material usage. The FEM simulation also speeds up and alleviates some necessary testing procedures in a prototype designing process.


Sign in / Sign up

Export Citation Format

Share Document