scholarly journals FATIGUE LIFE ANALYSIS OF RAMP DOOR FERRY RO-RO GT 1500 USING FINITE ELEMENT METHOD

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Alamsyah Alam ◽  
A. B. Mapangandro ◽  
Amalia Ika W ◽  
M U Pawara

Ro - Ro Ferry is equipped with a connecting door between the port and the ship. The ramp door experiences load during loading and discharging of the rolling cargo. This repetitive load may cause fatigue failure. The structure of the ramp door should withstand this load. Therefore, The ramp door should be properly designed to ensure the structural integrity of the ramp door. The purpose of this research is to analyze the maximum stress and the Fatigue life of the bow ramp door. The method used is the finite element method. The given loads are several types of vehicles that are commonly transported by the ship. The given load case is the point load working at the girder plate and between the girder plate. Based on the simulation results with the given point load, the maximum stress is identified located between the girder for the large truck case with 397.02 MPa, while the minimum stress located at the girder for sedan car with 43.93 MPa. As for the fatigue life of the bow ramp door construction. it is 1.17 ~ 398.64 years, and the load cycle is 5.35 x 104 ~ 9.05 x 106 cycle. Keywords : Bow Ramp Door; Stress; Fatigue Life; Finite Element; Ferry

Kapal ◽  
2021 ◽  
Vol 18 (2) ◽  
pp. 101-110
Author(s):  
Alamsyah Alamsyah ◽  
Samsu Dlukha Nurcholik ◽  
Suardi Suardi ◽  
M U Pawarah ◽  
Jumalia Jumalia

The Ferry Ro-Ro 5000GT has three levels of car deck that are connected by internal ramps. Two issues that have to be paid attention during the operation of the internal ramp there are the strength capacity and the design fatigue life of the internal ramp structure. The purpose of the research is to determine the strength and fatigue life of the internal ramp construction. The method used the Finite Element Method using a static load by load case of point load at top girder and between girders. Results of the research detected the maximum stress value is in the load case of the point load (three sedan car) at between of the girder is 52.143 MPa with the fatigue life is 44.47 years with the load cycle is 7300000 cycle while the minimum stress value detected at the load case of the point load (two sedan cars) at top girder is 34.199 MPa with the fatigue life is 195.92 years with the load cycle is 50000000 cycle. For the safety factor, ramp construction 6.08 ~ 10.38. The safety factor value above is still in safe condition because the value is SF > 1.


Author(s):  
Barıs¸ Koca ◽  
Bu¨lent Ekici

The focus of this study is to find fatigue behavior and fatigue life of a drag link in the different road and loading conditions. Finite element method was used for fatigue analysis and fatigue life of the drag link was predicted. Firstly, the historical changes in the concept of the fatigue and fatigue life calculation methods were explained in the chapter one and two. Factor affecting the fatigue performance was explained. Stress and strain based fatigue analysis methods were described clearly. Finally, fatigue life analysis in the frequency domain which is a new method relative to the others was explained. Then, two different steering drag links of a midibus were examined and fatigue life calculations of these two drag links were made. The fatigue life analysis in the time domain of the drag links were made in the static steering conditions and the results were compared with the test results made by the vendor of the drag links. After that, the drag link which has a greater fatigue life than the other was selected, the road loads were taken from another test report which was made by using the same drag link and the fatigue life of the drag link was computed by using the finite element method in the time domain. Finally, the same road loads were converted in the frequency domain and the fatigue life analysis of the same drag link were made in the frequency domain. The results from the time domain and the frequency domain were compared and the advantages of the fatigue life analysis in the frequency domain were expressed.


Author(s):  
Khalil Farhangdoost ◽  
Payman Hamrahan

In industries, pressure vessels or in general thick-wall cylinders under internal pressure are important parts and analysis of their applications in various conditions is essential. Therefore, for design of pressure vessels usage of standard codes like ASME is necessary. Most of cracked or damaged pressure vessels are exposed to cyclic loading. This failure process is fatigue. ASME codes have some codes for analyzing this process. These codes show the conditions and formulas for fatigue analysis. In this paper, a thick wall pressure vessel is analyzed with three cyclic loading regimes. The maximum stress intensity, fatigue life and damage factor are calculated by ASME codes. Then by usage of finite element method, ASME results are compared for fatigue life analysis. Previous investigations show that nozzle connection area of pressure vessels have high stress concentration, and usually crack is propagated from this zone. Thus fatigue analysis is accomplished for nozzle connection of pressure vessel by ASME codes and finite element method. Then nine shape of crack with same crack front size are modeled on the maximum stress zone of the nozzle connection. Then stresses of crack fronts and stress intensity factors of cracks are computed by finite element method with ABAQUS software which is powerful for fracture mechanic analysis. The critical crack which is elliptical prismatic crack virtually is grown step by step and for each step, stress intensity factor is computed by ABAQUS software. With relation between stress intensity factor and crack size also using Paris formula, fatigue life is computed. This operation is done for two type of crack growth. In first type length and depth of crack are grown and in second type only crack length is grown. Finally, the fatigue life obtained from Paris formula and ASME codes are compared.


2021 ◽  
Vol 104 ◽  
pp. 95-101
Author(s):  
Alamsyah ◽  
Wira Setiawan ◽  
S.O. Nugroho ◽  
Rodlian Jamal Rodlian ◽  
W. Amalia Ika ◽  
...  

Developing prototype aluminum pontoon lifting that functions as a floating dock for the repair of small vessels. To ensure the safety aspects of the construction of the Poonton lift, structural analysis is carried out. The purpose of research to determine the strength and fatigue life construction of lifting ponton due to loads. The method used is the finite element method and the palmgren-miner method. This research uses finite element based software. The results showed that the maximum stress value in the construction of the lifting pontoon is (σmax) = 74,897 MPa which is located in the H-Beam construction that functions as a supporting. The estimated fatigue life of the poonton lifting analyzed during operation is 9.46 years with a total load cycle of 1111680 cycles.


Author(s):  
J. P. Karthik ◽  
K. L. Chaitanya ◽  
C. Tara Sasanka

This study presents a fatigue life prediction based on finite element analysis under non constant amplitude proportional loading. Parabolic spring is the vital component in a vehicle suspension system, commonly used in trucks. It needs to have excellent fatigue life and recently, manufacturers rely on constant loading fatigue data. The objective of this study is to simulate the non constant amplitude proportional loading for the fatigue life analysis. The finite element method (FEM) was performed on the spring model to observe the distribution of stress and damage. The fatigue life simulation was performed and analyzed for materials AISI6150, SAE1045-595-QT. when using the loading sequences is predominantly tensile in the nature; the life of mounting in Goodman approach is more conservative. When the loading is predominantly tensile in nature, the life of the component in Morrow approach is more sensitive and is therefore recommended. It can be concluded that material SAE 1045-595-QT gives constantly higher life than material AISI6150for all loading conditions under both methods.


2016 ◽  
Vol 28 (3) ◽  
Author(s):  
Widia Hafsyah Sumarlina Ritonga ◽  
Janti Rusjanti ◽  
Nunung Rusminah ◽  
Aldilla Miranda ◽  
Tatacipta Dirgantara

Introduction: The surgical procedure of dental implant comprising one stage surgery for the non-submerged implant design and two stages for submerged. Submerged design is frequently used in Faculty of Dentistry Padjadjaran University as it is safer in achieving osseointegration. This study has been carried out to evaluate resistant capacity of an implant component design submerged against failure based on location and the value of internal stress during the application of mastication force using the 3D Finite Element Method (FEM). Methods: The present study used a CBCT radiograph of the mandibular patient and Micro CT Scan of one submerged implant. Radiograph image was then converted into a digital model of 3D computerized finite element, subsequently inputted the material properties and boundary condition with 87N occlusion load applied and about 29N for the shear force. Results: The maximum stress was found located at the contact area between the implant and alveolar crest with stress value registered up to 193.31MPa located within an implant body where is understandable that this value is far below allowable strength of titanium alloy of 860 MPa. Conclusion: The location of the maximum stress was located on the contact area between the implant-abutment and alveolar crest. This implant design is acceptable and no failure observed under mastication load.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5536
Author(s):  
David Curto-Cárdenas ◽  
Jose Calaf-Chica ◽  
Pedro Miguel Bravo Díez ◽  
Mónica Preciado Calzada ◽  
Maria-Jose Garcia-Tarrago

Cold expansion technology is an extended method used in aeronautics to increase fatigue life of holes and hence extending inspection intervals. During the cold expansion process, a mechanical mandrel is forced to pass along the hole generating compressive residual hoop stresses. The most widely accepted geometry for this mandrel is the tapered one and simpler options like balls have generally been rejected based on the non-conforming residual hoop stresses derived from their use. In this investigation a novelty process using multiple balls with incremental interference, instead of a single one, was simulated. Experimental tests were performed to validate the finite element method (FEM) models and residual hoop stresses from multiple balls simulation were compared with one ball and tapered mandrel simulations. Results showed that the use of three incremental balls significantly reduced the magnitude of non-conforming residual hoop stresses and the extension of these detrimental zone.


Sign in / Sign up

Export Citation Format

Share Document