scholarly journals Light-weight MobileNet for Fast Detection of COVID-19

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Muhammad Hafidh Firmansyah ◽  
Seok-Joo Koh ◽  
Wahyu Kurnia Dewanto ◽  
Trismayanti Dwi Puspitasari

The machine learning models based on Convolutional Neural Networks (CNNs) can be effectively used for detection and recognition of objects, such as Corona Virus Disease 19 (COVID-19). In particular, the MobileNet and Single Shot multi-box Detector (SSD) have recently been proposed as the machine learning model for object detection. However, there are still some challenges for deployment of such architectures on the embedded devices, due to the limited computational power. Another problem is that the accuracy of the associated machine learning model may be decreased, depending on the number of concerned parameters and layers. This paper proposes a light-weight MobileNet (LMN) architecture that can be used to improve the accuracy of the machine learning model, with a small number of layers and lower computation time, compared to the existing models. By experimentation, we show that the proposed LMN model can be effectively used for detection of COVID-19 virus. The proposed LMN can achieve the accuracy of 98% with the file size of 27.8 Mbits by replacing the standard CNN layers with separable convolutional layers.

2020 ◽  
Author(s):  
Ivan Alejandro Garcia Ramirez ◽  
Arturo Calderon ◽  
Andrés Méndez ◽  
Susana Ortega

Abstract Motivation: Datasets with high dimensionality represent a challenge to existing learning methods. The presence of irrelevant and redundant features in a dataset can degrade the performance of the models inferred from it. In large datasets, manual management of features tends to be impractical. Therefore, the development of automatic discovery techniques to remove useless features has attracted increasing interest. In this paper, we propose a novell framework to select relevant features in supervised datasets. Availability: This tool can be downloaded from https://github.com/ivangarcia88/selectionResults: This tool allow to identify relevant and remove redundant features, reducing computation time on training a machine learning model while improving the performance.


2018 ◽  
Author(s):  
Steen Lysgaard ◽  
Paul C. Jennings ◽  
Jens Strabo Hummelshøj ◽  
Thomas Bligaard ◽  
Tejs Vegge

A machine learning model is used as a surrogate fitness evaluator in a genetic algorithm (GA) optimization of the atomic distribution of Pt-Au nanoparticles. The machine learning accelerated genetic algorithm (MLaGA) yields a 50-fold reduction of required energy calculations compared to a traditional GA.


Author(s):  
Dhilsath Fathima.M ◽  
S. Justin Samuel ◽  
R. Hari Haran

Aim: This proposed work is used to develop an improved and robust machine learning model for predicting Myocardial Infarction (MI) could have substantial clinical impact. Objectives: This paper explains how to build machine learning based computer-aided analysis system for an early and accurate prediction of Myocardial Infarction (MI) which utilizes framingham heart study dataset for validation and evaluation. This proposed computer-aided analysis model will support medical professionals to predict myocardial infarction proficiently. Methods: The proposed model utilize the mean imputation to remove the missing values from the data set, then applied principal component analysis to extract the optimal features from the data set to enhance the performance of the classifiers. After PCA, the reduced features are partitioned into training dataset and testing dataset where 70% of the training dataset are given as an input to the four well-liked classifiers as support vector machine, k-nearest neighbor, logistic regression and decision tree to train the classifiers and 30% of test dataset is used to evaluate an output of machine learning model using performance metrics as confusion matrix, classifier accuracy, precision, sensitivity, F1-score, AUC-ROC curve. Results: Output of the classifiers are evaluated using performance measures and we observed that logistic regression provides high accuracy than K-NN, SVM, decision tree classifiers and PCA performs sound as a good feature extraction method to enhance the performance of proposed model. From these analyses, we conclude that logistic regression having good mean accuracy level and standard deviation accuracy compared with the other three algorithms. AUC-ROC curve of the proposed classifiers is analyzed from the output figure.4, figure.5 that logistic regression exhibits good AUC-ROC score, i.e. around 70% compared to k-NN and decision tree algorithm. Conclusion: From the result analysis, we infer that this proposed machine learning model will act as an optimal decision making system to predict the acute myocardial infarction at an early stage than an existing machine learning based prediction models and it is capable to predict the presence of an acute myocardial Infarction with human using the heart disease risk factors, in order to decide when to start lifestyle modification and medical treatment to prevent the heart disease.


Author(s):  
Dhaval Patel ◽  
Shrey Shrivastava ◽  
Wesley Gifford ◽  
Stuart Siegel ◽  
Jayant Kalagnanam ◽  
...  

Author(s):  
Juan C. Olivares-Rojas ◽  
Enrique Reyes-Archundia ◽  
Noel E. Rodriiguez-Maya ◽  
Jose A. Gutierrez-Gnecchi ◽  
Ismael Molina-Moreno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document