scholarly journals Design and Realization of Wideband Printed Monopole Antenna with Tel-U Logo Patch

Author(s):  
Macho Revelino Siahaan ◽  
Levi Olivia Nur ◽  
Radial Anwar

One of the challenges of antenna development for wireless communication systems is to create an antenna that casn be operated in wide frequency so that a single antenna can be used in various wireless communication technologies. This paper discussed the wideband antenna with Telkom University Logo-shaped patch, using Fr-4 (?r = 4.3) substrate with 1.6 mm thickness. The antenna can be operated in the frequency range of 760 MHz – 13.75 GHz. The gain performance at the working frequency is still above 0 dBi. Hence, the antenna design to work properly for wireless communication systems which require relatively long distances. The Defected Ground Substrate (DGS) method is applied to achieve that bandwidth. Measurement shows the logo-shaped patch antenna achieves 12.994 GHz bandwidth with 1.33 VSWR and gain 2.85 at 921.5 MHz frequency.

2018 ◽  
Vol 12 (7) ◽  
pp. 1222-1230 ◽  
Author(s):  
Mohammad Alibakhshikenari ◽  
Bal S. Virdee ◽  
Chan Hwang See ◽  
Raed Abd‐Alhameed ◽  
Abdul Ali ◽  
...  

2021 ◽  
pp. 105-113
Author(s):  
Sudipta Das ◽  
Apurba Chowdhury ◽  
Bikram Lala ◽  
Ravi Prakash Dwivedi ◽  
K. Vasu Babu ◽  
...  

2021 ◽  
Vol 42 (4) ◽  
pp. 357-370
Author(s):  
M. A. Salhi ◽  
T. Kleine-Ostmann ◽  
T. Schrader

AbstractIncreasing data rates in wireless communications are accompanied with the need for new unoccupied and unregulated bandwidth in the electromagnetic spectrum. Higher carrier frequencies in the lower THz frequency range might offer the solution for future indoor wireless communication systems with data rates of 100 Gbit/s and beyond that cannot be located elsewhere. In this review, we discuss propagation channel measurements in an extremely broad frequency range from 50 to 325 GHz in selected indoor communication scenarios including kiosk downloading, office room communication, living rooms, and typical industrial environments.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 347 ◽  
Author(s):  
Ke Li ◽  
Tao Dong ◽  
Zhenghuan Xia

This paper presents a multiple-resonance technique that sought to achieve a wide bandwidth for printed wide-slot antennas with fork-shaped stubs. By properly appending an extra fork-shaped stub onto the main fork-shaped stub, the impedance bandwidth was able to be clearly broadened. To validate this technique, two designs where the extra stubs were added at different positions of the main stub were constructed. The measured impedance bandwidths of the proposed antennas reached 148.6% (0.9–6.1 GHz) for S11 < −10 dB, indicating a 17.9% wider bandwidth than that of the normal antenna (0.9–4.3 GHz). Moreover, a stable radiation pattern was observed within the operating frequency range. The proposed antennas were confirmed to be much-improved candidates for applications in various wireless communication systems.


2019 ◽  
Vol 61 (10) ◽  
pp. 763-772
Author(s):  
V. V. Biryukov ◽  
V. L. Vaks ◽  
K. I. Kisilenko ◽  
A. N. Panin ◽  
S. I. Pripolzin ◽  
...  

ETRI Journal ◽  
2009 ◽  
Vol 31 (3) ◽  
pp. 271-281 ◽  
Author(s):  
Paitoon Rakluea ◽  
Noppin Anantrasirichai ◽  
Kanok Janchitrapongvej ◽  
Toshio Wakabayashi

Sign in / Sign up

Export Citation Format

Share Document