scholarly journals Characterization of low-density polyethylene reference material for melt flow rate by collaboration of NIS and a network of competent laboratories

2021 ◽  
pp. 1-11
Author(s):  
Hesham Moustafa ◽  
Ibrahim F. Tahoun ◽  
Ahmed I. Abou-Kandil ◽  
Nabila A. Darwish
Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 787 ◽  
Author(s):  
Janusz W. Sikora ◽  
Ivan Gajdoš ◽  
Andrzej Puszka

The aim of the present work is to investigate the effect of halloysite nanotubes (HNT) on the mechanical properties of low-density polyethylene composites modified by maleic anhydride-grafted PE (PE-graft-MA). Polyethylene nanocomposites were prepared using an injection molding machine, Arburg Allrounder 320 C 500–170; the HNT content was varied at 0 wt %, 2 wt %, 4 wt % and 6 wt %, and the PE-graft-MA content was varied at 5 wt %. The composites were examined for their ultimate tensile stress, strain at ultimate stress, hardness, impact strength, melt flow rate, heat deflection temperature, Vicat softening temperature, crystallinity degree and phase transition temperature. It was found that the addition of halloysite nanotubes to low-density polyethylene (LDPE) led to an increased heat deflection temperature (HDT, up to 47 °C) and ultimate tensile strength (up to 16.00 MPa) while the Vicat softening temperature, strain at ultimate stress, impact strength and hardness of examined specimens slightly decreased. Processing properties of the materials specified by the melt flow rate (MFR) deteriorated almost twice. The results have demonstrated that the nanoparticles can reinforce enhance LDPE at low filler content without any considerable loss of its ductility, but only when halloysite nanotubes are superbly distributed in the polyethylene matrix.


2011 ◽  
Vol 284-286 ◽  
pp. 1750-1755
Author(s):  
Jin Zhou Chen ◽  
Zhen Gao ◽  
Peng Ping Xie ◽  
Kai Guo ◽  
Ming Jun Niu ◽  
...  

In order to reduce the cost of the polylactic acid (PLLA) material and to improve its flexibility to expand the application of PLA-based plastic, a series of PLLA/SA blends with tetrabutyl titanate (Ti(OBu)4) used as compatibilizer were prepared in the presence of 10% triethyl citrate (TEC) as plasticizer. It was investigated the effect of the compatibilizer and its content on the mechanical properties, structure and morphologies, heat-resistant performance, melt flow rate, and water-resistant performance and other implications of blends. The results showed that: adding the compatibilizer Ti(OBu)4 could significantly improve the compatibility of PLLA and SA, the mechanical properties and thermal stability of the blends were increased, while melt flow rate and water absorption were decreased. When the content of compatibilizer Ti(OBu)4 was 8 wt%, PLA/SA blends(75/25 wt%) had the best overall performance.


2021 ◽  
Vol 11 (8) ◽  
pp. 3540
Author(s):  
Numfor Linda Bih ◽  
Assia Aboubakar Mahamat ◽  
Jechonias Bidossèssi Hounkpè ◽  
Peter Azikiwe Onwualu ◽  
Emmanuel E. Boakye

The quantity of polymer waste in our communities is increasing significantly. It is therefore necessary to consider reuse or recycling waste to avoid an increase in the risk to public health. This project is aimed at using pulverized low-density polyethylene (LDPE) waste as a source to reinforce and improve compressive strength, and to reduce the water absorption of geopolymer ceramics (GC). Clay:LDPE composition consisting of 5%, 10%, and 15% LDPE was geopolymerized with an NaOH/Na2SiO3 solution and cured at 30 °C and 50 °C. Characterization of the geopolymer samples was carried out using XRF and XRD. The microstructure was analyzed by SEM and chemical bonding by FTIR. The SEM micrographs showed LDPE particle pull-out on the geopolymer ceramics’ fracture surface. The result showed that the compressive strength increases with the addition of pulverized polymer waste compared to the controlled without LDPE addition. Water absorption decreased with an increase in LDPE addition in the geopolymer ceramics composite.


1988 ◽  
Vol 27 (2) ◽  
pp. 172-178 ◽  
Author(s):  
S. Ottani ◽  
A. Valenza ◽  
F. P. La Mantia

Sign in / Sign up

Export Citation Format

Share Document