scholarly journals Polyethylene-Matrix Composites with Halloysite Nanotubes with Enhanced Physical/Thermal Properties

Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 787 ◽  
Author(s):  
Janusz W. Sikora ◽  
Ivan Gajdoš ◽  
Andrzej Puszka

The aim of the present work is to investigate the effect of halloysite nanotubes (HNT) on the mechanical properties of low-density polyethylene composites modified by maleic anhydride-grafted PE (PE-graft-MA). Polyethylene nanocomposites were prepared using an injection molding machine, Arburg Allrounder 320 C 500–170; the HNT content was varied at 0 wt %, 2 wt %, 4 wt % and 6 wt %, and the PE-graft-MA content was varied at 5 wt %. The composites were examined for their ultimate tensile stress, strain at ultimate stress, hardness, impact strength, melt flow rate, heat deflection temperature, Vicat softening temperature, crystallinity degree and phase transition temperature. It was found that the addition of halloysite nanotubes to low-density polyethylene (LDPE) led to an increased heat deflection temperature (HDT, up to 47 °C) and ultimate tensile strength (up to 16.00 MPa) while the Vicat softening temperature, strain at ultimate stress, impact strength and hardness of examined specimens slightly decreased. Processing properties of the materials specified by the melt flow rate (MFR) deteriorated almost twice. The results have demonstrated that the nanoparticles can reinforce enhance LDPE at low filler content without any considerable loss of its ductility, but only when halloysite nanotubes are superbly distributed in the polyethylene matrix.

2014 ◽  
Vol 633-634 ◽  
pp. 230-233
Author(s):  
Yun Ping Cao ◽  
Yu Zu Tu ◽  
Juan Li

In this paper, we mainly introduces the influence of the processing aids TR131 which namely the lubricating and dispersion agents on the properties of high filled polypropylene. The experiment compared the melt flow rate, tensile strength, bending strength and impact strength of the high filled polypropylene with processing aids TR131 and without it. The results show that high filled polypropylene with Calcium Carbonate could improve the bending strength and impact strength of the pure polypropylene, but the melt flow rate and tensile strength decreased. Incorporation of processing aids TR131 could improve the melt flow rate and the tensile strength of the high filled polypropylene.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1821
Author(s):  
Ildar I. Salakhov ◽  
Nadim M. Shaidullin ◽  
Anatoly E. Chalykh ◽  
Mikhail A. Matsko ◽  
Alexey V. Shapagin ◽  
...  

Low-temperature properties of high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and their blends were studied. The analyzed low-temperature mechanical properties involve the deformation resistance and impact strength characteristics. HDPE is a bimodal ethylene/1-hexene copolymer; LDPE is a branched ethylene homopolymer containing short-chain branches of different length; LLDPE is a binary ethylene/1-butene copolymer and an ethylene/1-butene/1-hexene terpolymer. The samples of copolymers and their blends were studied by gel permeation chromatography (GPC), differential scanning calorimetry (DSC), 13С NMR spectroscopy, and dynamic mechanical analysis (DMA) using testing machines equipped with a cryochamber. It is proposed that such parameters as “relative elongation at break at −45 °C” and “Izod impact strength at −40 °C” are used instead of the ductile-to-brittle transition temperature to assess frost resistance properties because these parameters are more sensitive to deformation and impact at subzero temperatures for HDPE. LLDPE is shown to exhibit higher relative elongation at break at −45 °C and Izod impact strength at −20 ÷ 60 °C compared to those of LDPE. LLDPE terpolymer added to HDPE (at a content ≥ 25 wt.%) simultaneously increases flow properties and improves tensile properties of the blend at −45 °C. Changes in low-temperature properties as a function of molecular weight, MWD, crystallinity, and branch content were determined for HDPE, LLDPE, and their blends. The DMA data prove the resulting dependences. The reported findings allow one to understand and predict mechanical properties in the HDPE–LLDPE systems at subzero temperatures.


2014 ◽  
Vol 979 ◽  
pp. 143-146 ◽  
Author(s):  
Surakit Tuampoemsab ◽  
Saad Riyajan ◽  
Thritima Sritapunya ◽  
Pornsri Pakeyangkoon

Studies on the effect of percentages of epoxide group in thermoplastic elastomer as a compatibilizer on properties of polyamide6 (PA6) and low-density polyethylene (LDPE) blends was successfully carried out in this study. Thermoplastic epoxidized natural rubber (TPENR), made from epoxidized natural rubber (ENR) and LDPE, prepared from 3 types of ENR, i.e., ENR-20, ENR-50 and ENR-70, with the ratio of 90/10 of LDPE/ENR by weight. TPENR was applied as a compatibilizer into the blend of PA6/LDPE/TPENR at the ratio by weight of 80/20/1 by using a twin screw extruder at 235°C. All test specimens were characterized for phase morphology, impact strength and rheological behaviour. Results exhibited that phase morphology of PA6/LDPE blend was incompatible. The addition of TPENR improved the compatibility of PA6/LDPE blends. With inclusion of TPENR-20 as a compatibilizer, the uniformity and the maximum reduction of dispersed phase sized were observed. Moreover, it was revealed that the rheological properties such as shear viscosity increased when compared with PA6/LDPE incompatible blend. In addition, it was found that the highest shear viscosity and also the highest impact strength were obtained for the blend of PA6/LDPE compatibilized by TPENR-20. This result was further supported by SEM images, which showed that the smallest dispersed phase size occurred when a TPENR-20 was used as a compatibilizer. So, it was clearly demonstrated in this study that the suitable type of TPENR, i.e., TPENR-20, has an effect on improving phase morphology and properties of PA6/LDPE blends.


2018 ◽  
Vol 32 (3) ◽  
pp. 297-311 ◽  
Author(s):  
Yousef Ahmad Mubarak ◽  
Raghda Talal Abdulsamad

This work was intended to provide an understanding of the effect of microcrystalline cellulose (MCC) on the mechanical properties of low-density polyethylene (LDPE). The impact resistance and the tensile properties of low-density LDPE/MCC composites were investigated. The weight fraction of MCC was varied at (0, 0.5, 1, 2.5, 5, 10, 20, and 30 wt%). The obtained blends were then used to prepare the required tensile and impact testing samples by hot compression molding technique. It has been found that MCC has a strong influence on the mechanical properties of LDPE. At a low MCC weight fraction, there was a little improvement in the ultimate strength, fracture stress, and elongation at break, but at a high MCC weight fraction, the tensile properties were deteriorated and reduced significantly. The addition of 1 wt% MCC to LDPE enhanced the mentioned properties by 10, 25, and 6%, respectively. While at 30 wt% MCC, these properties were lowered by 36, 25, and 96%. The elastic modulus of LDPE composites was improved on all MCC weight fractions used in the study, at 20 wt% MCC, an increase in the elastic modulus by 12 folds was achieved. On the other hand and compared with the impact strength of pure LDPE, the addition of MCC particles enhanced the impact strength, the highest value obtained was for LDPE composites filled with 10 wt% MCC where the impact strength enhanced by two folds.


Author(s):  
E. Rajamäki ◽  
M. Leino ◽  
P. Vuoristo ◽  
P. Järvelä ◽  
T. Mäntylä

Abstract Three different types of polyethylene powders were flame sprayed onto pre-heated steel substrate previously coated by electrostatic spray system with a thin epoxy primer layer. Properties of the polyethylene (PE) powders, including powder density, particle size and melt flow rate (MFR) were measured in order to study their influence on the mechanical properties of the coating. The spray experiments started with optimization of spraying parameters. The main variables were pre-heating temperature of the substrate, temperature increase during spraying (influenced by the spraying distance), and thickness of the PE coatings. The laboratory tests performed for the coatings were coating characterization by microscopy and mechanical testing. Porosity and thickness of the coatings were determined by optical and stereo microscopy studies from polished cross-sectional samples. Hardness, impact strength, peel strength, and adhesive strength of the coatings were also investigated. Also some hot water sinking and heat cycling tests were performed. As a result from the present studies it can be concluded that powder properties have great influence on the mechanical properties of the final coating.


Sign in / Sign up

Export Citation Format

Share Document