Gas Turbine Fault Diagnosis Using Fuzzy-Based Decision Fusion

2009 ◽  
Vol 25 (2) ◽  
pp. 335-343 ◽  
Author(s):  
A. Kyriazis ◽  
K. Mathioudakis
2016 ◽  
Vol 10 (1) ◽  
pp. 13-22
Author(s):  
Qingyang Xu

Adaptive Resonance Theory (ART) model is a special neural network based on unsupervised learning which simulates the cognitive process of human. However, ART1 can be only used for binary input, and ART2 can be used for binary and analog vectors which have complex structures and complicated calculations. In order to improve the real-time performance of the network, a minimal structural ART is proposed which combines the merits of the two models by subsuming the bottom-up and top-down weight. The vector similarity test is used instead of vigilance test. Therefore, this algorithm has a simple structure like ART1 and good performance as ART2 which can be used for both binary and analog vector classification, and it has a high efficiency. Finally, a gas turbine fault diagnosis experiment exhibits the validity of the new network.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Defeng Lv ◽  
Huawei Wang ◽  
Changchang Che

Purpose The purpose of this study is to achieve an accurate intelligent fault diagnosis of rolling bearing. Design/methodology/approach To extract deep features of the original vibration signal and improve the generalization ability and robustness of the fault diagnosis model, this paper proposes a fault diagnosis method of rolling bearing based on multiscale convolutional neural network (MCNN) and decision fusion. The original vibration signals are normalized and matrixed to form grayscale image samples. In addition, multiscale samples can be achieved by convoluting these samples with different convolution kernels. Subsequently, MCNN is constructed for fault diagnosis. The results of MCNN are put into a data fusion model to obtain comprehensive fault diagnosis results. Findings The bearing data sets with multiple multivariate time series are used to testify the effectiveness of the proposed method. The proposed model can achieve 99.8% accuracy of fault diagnosis. Based on MCNN and decision fusion, the accuracy can be improved by 0.7%–3.4% compared with other models. Originality/value The proposed model can extract deep general features of vibration signals by MCNN and obtained robust fault diagnosis results based on the decision fusion model. For a long time series of vibration signals with noise, the proposed model can still achieve accurate fault diagnosis.


2019 ◽  
Vol 11 (22) ◽  
pp. 6202 ◽  
Author(s):  
Valentina Zaccaria ◽  
Moksadur Rahman ◽  
Ioanna Aslanidou ◽  
Konstantinos Kyprianidis

The correct and early detection of incipient faults or severe degradation phenomena in gas turbine systems is essential for safe and cost-effective operations. A multitude of monitoring and diagnostic systems were developed and tested in the last few decades. The current computational capability of modern digital systems was exploited for both accurate physics-based methods and artificial intelligence or machine learning methods. However, progress is rather limited and none of the methods explored so far seem to be superior to others. One solution to enhance diagnostic systems exploiting the advantages of various techniques is to fuse the information coming from different tools, for example, through statistical methods. Information fusion techniques such as Bayesian networks, fuzzy logic, or probabilistic neural networks can be used to implement a decision support system. This paper presents a comprehensive review of information and decision fusion methods applied to gas turbine diagnostics and the use of probabilistic reasoning to enhance diagnostic accuracy. The different solutions presented in the literature are compared, and major challenges for practical implementation on an industrial gas turbine are discussed. Detecting and isolating faults in a system is a complex problem with many uncertainties, including the integrity of available information. The capability of different information fusion techniques to deal with uncertainty are also compared and discussed. Based on the lessons learned, new perspectives for diagnostics and a decision support system are proposed.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Zhi-tao Wang ◽  
Ning-bo Zhao ◽  
Wei-ying Wang ◽  
Rui Tang ◽  
Shu-ying Li

As an important gas path performance parameter of gas turbine, exhaust gas temperature (EGT) can represent the thermal health condition of gas turbine. In order to monitor and diagnose the EGT effectively, a fusion approach based on fuzzy C-means (FCM) clustering algorithm and support vector machine (SVM) classification model is proposed in this paper. Considering the distribution characteristics of gas turbine EGT, FCM clustering algorithm is used to realize clustering analysis and obtain the state pattern, on the basis of which the preclassification of EGT is completed. Then, SVM multiclassification model is designed to carry out the state pattern recognition and fault diagnosis. As an example, the historical monitoring data of EGT from an industrial gas turbine is analyzed and used to verify the performance of the fusion fault diagnosis approach presented in this paper. The results show that this approach can make full use of the unsupervised feature extraction ability of FCM clustering algorithm and the sample classification generalization properties of SVM multiclassification model, which offers an effective way to realize the online condition recognition and fault diagnosis of gas turbine EGT.


Author(s):  
Craig R. Davison ◽  
A. M. Birk

A computer model of a gas turbine auxiliary power unit was produced to develop techniques for fault diagnosis and prediction of remaining life in small gas turbine engines. Due to the relatively low capital cost of small engines it is important that the techniques have both low capital and operating costs. Failing engine components were identified with fault maps, and an algorithm was developed for predicting the time to failure, based on the engine’s past operation. Simulating daily engine operation over a maintenance cycle tested the techniques for identification and prediction. The simulation included daily variations in ambient conditions, operating time, load, engine speed and operating environment, to determine the amount of degradation per day. The algorithm successfully adapted to the daily changes and corrected the operating point back to standard conditions to predict the time to failure.


Sign in / Sign up

Export Citation Format

Share Document