Measurement of Injector-Driven Flame Response to Acoustic Perturbation Using Fuel-Line Transfer Function

2020 ◽  
pp. 1-4 ◽  
Author(s):  
Seongpil Joo ◽  
Sanghyeok Kwak ◽  
Youngbin Yoon ◽  
Jongguen Lee
Author(s):  
Joseph Ranalli ◽  
Don Ferguson

Exhaust gas recirculation has been proposed as a potential strategy for reducing the cost and efficiency penalty associated with postcombustion carbon capture. However, this approach may cause as-yet unresolved effects on the combustion process, including additional potential for the occurrence of thermoacoustic instabilities. Flame dynamics, characterized by the flame transfer function, were measured in traditional swirl stabilized and low-swirl injector combustor configurations, subject to exhaust gas circulation simulated by N2 and CO2 dilution. The flame transfer functions exhibited behavior consistent with a low-pass filter and showed phase dominated by delay. Flame transfer function frequencies were nondimensionalized using Strouhal number to highlight the convective nature of this delay. Dilution was observed to influence the dynamics primarily through its role in changing the size of the flame, indicating that it plays a similar role in determining the dynamics as changes in the equivalence ratio. Notchlike features in the flame transfer function were shown to be related to interference behaviors associated with the convective nature of the flame response. Some similarities between the two stabilization configurations proved limiting and generalization of the physical behaviors will require additional investigation.


Author(s):  
Brian Jones ◽  
Jong Guen Lee ◽  
Bryan D. Quay ◽  
Domenic A. Santavicca

The response of turbulent premixed flames to inlet velocity fluctuations is studied experimentally in a lean premixed, swirl-stabilized, gas turbine combustor. Overall chemiluminescence intensity is used as a measure of the fluctuations in the flame’s global heat release rate, and hot wire anemometry is used to measure the inlet velocity fluctuations. Tests are conducted over a range of mean inlet velocities, equivalence ratios, and velocity fluctuation frequencies, while the normalized inlet velocity fluctuation (V′/Vmean) is fixed at 5% to ensure linear flame response over the employed modulation frequency range. The measurements are used to calculate a flame transfer function relating the velocity fluctuation to the heat release fluctuation as a function of the velocity fluctuation frequency. At low frequency, the gain of the flame transfer function increases with increasing frequency to a peak value greater than 1. As the frequency is further increased, the gain decreases to a minimum value, followed by a second smaller peak. The frequencies at which the gain is minimum and achieves its second peak are found to depend on the convection time scale and the flame’s characteristic length scale. Phase-synchronized CH∗ chemiluminescence imaging is used to characterize the flame’s response to inlet velocity fluctuations. The observed flame response can be explained in terms of the interaction of two flame perturbation mechanisms, one originating at flame-anchoring point and propagating along the flame front and the other from vorticity field generated in the outer shear layer in the annular mixing section. An analysis of the phase-synchronized flame images show that when both perturbations arrive at the flame at the same time (or phase), they constructively interfere, producing the second peak observed in the gain curves. When the perturbations arrive at the flame 180 degrees out-of-phase, they destructively interfere, producing the observed minimum in the gain curve.


2019 ◽  
Vol 34 (4) ◽  
pp. 1490-1498 ◽  
Author(s):  
Mahdi Mahdipour ◽  
Asghar Akbari ◽  
Peter Werle ◽  
Hossein Borsi

Author(s):  
Daesik Kim ◽  
Jong Guen Lee ◽  
Bryan D. Quay ◽  
Domenic A. Santavicca ◽  
Kwanwoo Kim ◽  
...  

The flame transfer function in a premixed gas turbine combustor is experimentally determined. The fuel (natural gas) is premixed with air upstream of a choked inlet to the combustor. Therefore, the input to the flame transfer function is the imposed velocity fluctuations of the fuel/air mixture without equivalence ratio fluctuations. The inlet-velocity fluctuations are achieved by a variable-speed siren over the forcing frequency of 75–280 Hz and measured using a hot-wire anemometer at the inlet to the combustor. The output function (heat release) is determined using chemiluminescence measurement from the whole flame. Flame images are recorded to understand how the flame structure plays a role in the global heat release response of flame to the inlet-velocity perturbation. The results show that the gain and phase of the flame transfer function depend on flame structure as well as the frequency and magnitude of inlet-velocity modulation and can be generalized in terms of the relative length scale of flame to convection length scale of inlet-velocity perturbation, which is represented by a Strouhal number. Nonlinear flame response is characterized by a periodic vortex shedding from shear layer, and the nonlinearity occurs at lower magnitude of inlet-velocity fluctuation as the modulation frequency increases. However, for a given modulation frequency, the flame structure does not affect the magnitude of inlet-velocity fluctuation at which the nonlinear flame response starts to appear.


Author(s):  
Krzysztof Kostrzewa ◽  
Axel Widenhorn ◽  
Berthold Noll ◽  
Manfred Aigner ◽  
Werner Krebs ◽  
...  

In order to achieve low levels of pollutants modern gas turbine combustion systems operate in lean and premixed modes. However, under these conditions self-excited combustion oscillations due to a complex feedback mechanism between pressure and heat release fluctuations can be found. These instabilities may lead to uncontrolled high pressure amplitude oscillations which can damage the whole combustor. The flame induced acoustic source terms are still analytically not well described and are a major topic of thermo-acoustic investigations. For the analysis of thermo-acoustic phenomena in gas turbine combustion systems flame transfer functions can be utilized. The purpose of this paper is to introduce and to investigate modeling parameters, which could influence a novel computational approach to reconstruct flame transfer functions known as the CFD/SI method. The flame transfer function estimation is made by application of a system identification method based on Wiener-Hopf formulation. Varying acoustic boundary conditions, combustion models and time resolutions may strongly affect the reconstructed flame response characterizing overall system dynamics. The CFD/SI approach has been applied to a generic gas turbine burner to derive a flame response. 3D unsteady simulations excited with white noise have been performed and the reconstructed flame transfer functions have been validated with experimental data. Moreover, the impact on the reconstructed flame transfer functions because of different boundary condition configurations has been examined.


Author(s):  
D. A. Lacoste ◽  
J. P. Moeck ◽  
D. Durox ◽  
C. O. Laux ◽  
T. Schuller

The effects of Nanosecond Repetitively Pulsed (NRP) plasma discharges on the dynamics of a swirl-stabilized lean premixed flame are investigated experimentally. Voltage pulses of 8-kV amplitude and 10-ns duration are applied at a repetition rate of 30 kHz. The average electric power deposited by the plasma is limited to 40 W, corresponding to less than 1 % of the thermal power of 4 kW released by the flame. The investigation is carried out with a dedicated experimental setup that allows for studies of the flame dynamics with applied plasma discharges. A loudspeaker is used to perturb the flame acoustically, and the discharges are generated between a central pin electrode and the rim of the injection tube. Velocity and CH* chemiluminescence signals are used to determine the flame transfer function assuming that plasma discharges do not affect the correlation between CH* emission and heat release rate fluctuations. Phase-locked images of the CH* emission were recorded to assess the effect of the plasma on the oscillation of the flame. The results show a strong influence of the NRP discharges on the flame response to acoustic perturbations, thus opening interesting perspectives for combustion control. An interpretation of the modifications observed in the transfer function of the flame is proposed by taking into account the thermal and chemical effects of the discharges. It is then demonstrated that by applying NRP discharges at unstable conditions, the oscillation amplitudes can be reduced by an order of magnitude, thus effectively stabilizing the system.


Author(s):  
Ben Bellows ◽  
Tim Lieuwen

This paper describes an experimental investigation of the response of the flame in a lean, premixed combustor to imposed acoustic oscillations. The ultimate objective of this work is to develop capabilities for predicting the amplitude of combustion instabilities in gas turbines. Simultaneous measurements of CH* and OH* chemiluminescence, pressure, and velocity were obtained over a range of forcing amplitudes and frequencies. These data show that nonlinearity in the heat release/acoustic transfer function is manifested in two ways. First, the flame chemiluminescence response to imposed oscillations saturates at pressure and velocity amplitudes on the order of p’/po ∼0.02 and u’/uo∼0.3. In addition, the phase between the CH* or OH* oscillations and acoustic oscillations exhibits some amplitude dependence, even at disturbance amplitudes where the amplitude transfer function is linear. We also find that the response of this swirling, highly turbulent flame exhibits similarities to those of simple, laminar flame configurations. First, the “linear”, low amplitude flame response is similar to the laminar, V-flame measurements and predictions of Schuller et al. [1]. Also, at large disturbance amplitudes, the subharmonic characteristics of the oscillations exhibit analogous characteristics to those observed by Bourehla & Baillot [2] in a conical Bunsen flame, and Searby & Rochwerger [3] in a flat flame.


Author(s):  
Ju Hyeong Cho ◽  
Tim C. Lieuwen

Combustion instabilities continue to cause significant reliability and availability problems in low emissions gas turbine combustors. It is known that these instabilities are often caused by a self-exciting feedback loop between unsteady heat release rate and reactive mixture equivalence ratio perturbations. We present an analysis of the flame’s response to equivalence ratio perturbations by considering the kinematic equations for the flame front. This response is controlled by three processes: heat of reaction, flame speed, and flame area. The first two are directly generated by equivalence ratio oscillations. The third is indirect, as it is generated by the flame speed fluctuations. The first process dominates the response of the flame at low Strouhal numbers, roughly defined as frequency times flame length divided by mean flow velocity. All three processes play equal roles at Strouhal numbers of O(1). The mean equivalence ratio exerts little effect upon this transfer function at low Strouhal numbers. At O(1) Strouhal numbers, the flame response increases with decreasing values of the mean equivalence ratio. Thus, these results are in partial agreement with heuristic arguments made in prior studies that the flame response to equivalence ratio oscillations increases as the fuel/air ratio becomes leaner. In addition, a result is derived for the sensitivity of this transfer function to uncertainties in mean flame position. For example, a sensitivity of 10 means that a 5% uncertainty in flame position translates into a 50% uncertainty in transfer function. This sensitivity is of O(1) for St<<1, but has very high values for St∼O(1).


Author(s):  
Jihang Li ◽  
Stephen Peluso ◽  
Domenic Santavicca ◽  
James Blust

Abstract The effect of a fully-premixed pilot flame on the velocity-forced flame response of a fully premixed flame in a single-nozzle lean-premixed swirl combustor operating on natural gas fuel is investigated. Measurements of the flame transfer function show that as the percent pilot is increased there is a decrease in the flame transfer function gain at all frequencies, a decrease in the frequencies at which the gain minima and maxima occurred, and a decrease in the flame transfer function phase at high frequencies. High-speed CH* chemiluminescence flame imaging is used to gain a better understanding of the mechanism(s) whereby the pilot flame affects flame dynamics and thereby the flame transfer function. Time-averaged flame images show that the location of the maximum heat release rate does not change with forcing frequency or percent pilot, although the flame extends further upstream into the inner shear layer with increasing percent pilot. Heat release rate fluctuation images show that significant heat release rate fluctuations occur in the inner shear layer, the outer recirculation zone, and the near wall region and that the primary effect of increasing the forcing frequency or the percent pilot is a shift of the heat release rate fluctuation from the near wall region to the inner shear layer. In addition, an increase in the percent pilot results in lengthening and narrowing of the inner shear layer and the near wall regions. The phase images show that the phase is less uniform as the frequency or percent pilot increase, resulting in greater interference between in phase and out of phase fluctuations which reduces the FTF gain. The phase images also show that the wavelength of the heat release rate perturbation travelling through the inner shear layer decreases with increasing frequency and percent pilot which suggests that the pilot flame alters the recirculation flow field. Flame transfer functions calculated for the heat release rate fluctuations in the inner shear layer, the near wall region and the outer recirculation zone show that the inner shear layer is the largest contributor to the global heat release rate fluctuation in the unpiloted flame and that the primary effect of the pilot flame on the reduction of the global FTF gain is a result of the pilot flame’s effect on the inner shear layer.


Sign in / Sign up

Export Citation Format

Share Document