ZONA6 Versus the Doublet-Lattice Method for Unsteady Aerodynamics on Lifting Surfaces

2012 ◽  
Vol 49 (3) ◽  
pp. 966-968 ◽  
Author(s):  
P. C. Chen ◽  
Samarth Bhasin
2014 ◽  
Vol 684 ◽  
pp. 58-63
Author(s):  
Da Qian Zhang ◽  
Xiao Dong Tan ◽  
Zi Lei Zhang ◽  
Xin Ping Fu

Based on the similarity theory, the horizontal tail scale model is designed and manufactured. Subsonic doublet lattice method is used to calculate unsteady aerodynamics, V-g method is used to solve the flutter determinant. Optimus software is used to optimize the thickness of the skin. The constraint condition is the frequency, MAC value and flexibility, and the objective function is flutter dynamic pressure. Flutter velocity of horizontal tail model optimized decreased 6%,and flutter frequency increased greatly. Horizontal tail scale model was test in wind tunnel. The finite element calculate results was very close with wind tunnel results, which verify the correctness of the finite element model and optimization models.


1998 ◽  
Vol 35 (5) ◽  
pp. 720-727 ◽  
Author(s):  
William P. Rodden ◽  
Paul F. Taylor ◽  
Samuel C. McIntosh

2020 ◽  
Vol 99 (4) ◽  
pp. 297-308
Author(s):  
Marco Pizzoli

AbstractThe present paper provides an investigation of the effects of linear slosh dynamics on aeroelastic stability and response of flying wing configuration. The proposal of this work is to use reduced order model based on the theory of the equivalent mechanical models for the description of the sloshing dynamics. This model is then introduced into an integrated modeling that accounts for both rigid and elastic behavior of flexible aircraft. The formulation also provides for fully unsteady aerodynamics modeled in the frequency domain via doublet lattice method and recast in time-domain state-space form by means of a rational function approximation. The case study consists of the so-called body freedom flutter research model equipped with a single tank, partially filled with water, located underneath the center of mass of the aircraft. The results spotlight that neglecting such sloshing effects considering the liquid as a frozen mass may overshadow possible instabilities, especially for mainly rigid-body dynamics.


1979 ◽  
Vol 101 (3) ◽  
pp. 341-347 ◽  
Author(s):  
M. Couston ◽  
J. J. Angelini

An alternating-direction implicit algorithm is applied to solve an improved formulation of the low-frequency, small-disturbance, two-dimensional potential equation. Linear solutions are presented for oscillating trailing edge flaps, plunging and pitching flat-plate airfoils, and compared with results obtained by a doublet-lattice-method. Nonlinear calculations for both steady and unsteady flow problems are then compared with results obtained by using the complete Euler equations. The present procedure allows one to solve complex aerodynamic problems, including flows with shock waves.


2010 ◽  
Vol 133 (1) ◽  
Author(s):  
Carlos De Marqui ◽  
Wander G. R. Vieira ◽  
Alper Erturk ◽  
Daniel J. Inman

Multifunctional structures are pointed out as an important technology for the design of aircraft with volume, mass, and energy source limitations such as unmanned air vehicles (UAVs) and micro air vehicles (MAVs). In addition to its primary function of bearing aerodynamic loads, the wing/spar structure of an UAV or a MAV with embedded piezoceramics can provide an extra electrical energy source based on the concept of vibration energy harvesting to power small and wireless electronic components. Aeroelastic vibrations of a lifting surface can be converted into electricity using piezoelectric transduction. In this paper, frequency-domain piezoaeroelastic modeling and analysis of a cantilevered platelike wing with embedded piezoceramics is presented for energy harvesting. The electromechanical finite-element plate model is based on the thin-plate (Kirchhoff) assumptions while the unsteady aerodynamic model uses the doublet-lattice method. The electromechanical and aerodynamic models are combined to obtain the piezoaeroelastic equations, which are solved using a p-k scheme that accounts for the electromechanical coupling. The evolution of the aerodynamic damping and the frequency of each mode are obtained with changing airflow speed for a given electrical circuit. Expressions for piezoaeroelastically coupled frequency response functions (voltage, current, and electrical power as well the vibratory motion) are also defined by combining flow excitation with harmonic base excitation. Hence, piezoaeroelastic evolution can be investigated in frequency domain for different airflow speeds and electrical boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document