aeroelastic vibrations
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 5)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
Vol 50 (5) ◽  
pp. 419-429
Author(s):  
A. A. Afanaseva ◽  
A. M. Gouskov ◽  
G. Ya. Panovko

2019 ◽  
Vol 91 (3) ◽  
pp. 420-427
Author(s):  
Franciszek Dul

PurposeThe purpose of the paper is to analyze the active suppression of the aeroelastic vibrations of ailerons with strongly nonlinear characteristics by neural network/reinforcement learning (NN/RL) control method and comparing it with the classic robust methods of suppression.Design/methodology/approachThe flexible wing and aileron with hysteresis nonlinearity is treated as a plant-controller system and NN/RL and robust controller are used to suppress the nonlinear aeroelastic vibrations of aileron. The simulation approach is used for analyzing the efficiency of both types of methods in suppressing of such vibrations.FindingsThe analysis shows that the NN/RL controller is able to suppress the nonlinear vibrations of aileron much better than linear robust method, although its efficiency depends essentially on the NN topology as well as on the RL strategy.Research limitations/implicationsOnly numerical analysis was carried out; thus, the proposed solution is of theoretical value, and its application to the real suppression of aeroelastic vibrations requires further research.Practical implicationsThe work shows the NN/RL method has a great potential in improving suppression of highly nonlinear aeroelastic vibrations, opposed to the classical robust methods that probably reach their limits in this area.Originality/valueThe work raises the questions of controllability of the highly nonlinear aeroelastic systems by means of classical robust and NN/RL methods of control.


2019 ◽  
Vol 17 (4) ◽  
pp. 155-169
Author(s):  
Andrzej Flaga ◽  
Łukasz Flaga ◽  
Piotr Krajewski ◽  
Aleksander Pistol

In the first part of this paper, similarity criteria were elaborated for investiga-tions of aeroelastic sectional models of high voltage line wires. These criteria consider wire vibrations caused by aeroelastic phenomena: vortex excitation, wake galloping and interfer-ence between the wires causing vibration in aerodynamic trace of other wires. Second part of the paper describes the tests conducted in Wind Engineering Laboratory of Cracow Univer-sity of Technology. The subject of this set of tests was identifi cation of aeroelastic vibrations caused by aeroelastic interference of wires, mainly determination of critical velocity of wires galloping and wake galloping for selected cases of snow and ice covers on the wires.


Aerospace ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 86 ◽  
Author(s):  
Yongzhi Wang ◽  
Andrea Da Ronch ◽  
Maryam Ghandchi Tehrani

This paper demonstrates the implementation of an adaptive feedforward controller to reduce structural vibrations on a wing typical section. The aeroelastic model includes a structural nonlinearity, which is modelled in a polynomial form. Aeroelastic vibrations are induced by several gusts and atmospheric turbulence, including the discrete “one-minus-cosine” and a notably good approximation in the time-domain to the von Kármán spectrum. The control strategy based on the adaptive feedforward controller has several advantages compared to the standard feedback controller. The controller gains, which are updated in real-time during the gust encounter, are found solving a minimization problem using the finite impulse responses as basis functions. To make progress with the application in aeroelasticity, a single-input single-output controller is designed measuring the wing torsional deformation. For both deterministic and random atmospheric shapes, the controller was found successful in alleviating the aeroelastic vibrations. The impact of the control action on the unmeasured structural modes was found minimal.


2018 ◽  
Vol 90 (4) ◽  
pp. 688-698 ◽  
Author(s):  
Franciszek Dul

Purpose The purpose of this paper is to analyze the active suppression of the nonlinear aeroelastic vibrations of ailerons caused by freeplay by robust H∞ and linear quadratic Gauss (LQG) methods of control in case of incomplete measurements of the state of the system. Design/methodology/approach The flexible wing with nonlinear aileron with freeplay is treated as a plant-controller system with H∞ and LQG controllers used to suppress the aeroelastic vibrations. The simulation approach was used for analyzing the impact of completeness of measurements on the efficiency and robustness of the controllers. Findings The analysis shows that the H∞ method can be effectively used for suppression of nonlinear aeroelastic vibrations of aileron, although its efficiency depends essentially on completeness and types of measurements. The LQG method is less effective, but it is also able to prevent aileron vibrations by reducing their amplitudes to acceptable, safe level. Research limitations/implications Only numerical analysis was carried out for the problem described; thus, the proposed solution is of theoretical value at this stage of analysis, and its application to the real suppression of aeroelastic vibrations requires further research. Practical implications The work presents a potentially useful solution to the problem of interest and results are a theoretical basis for further research. Social implications This work may lead to a hot debate on the advantages and drawbacks of the active suppression of vibrations in the aeroelasticians community. Originality/value The work raises the important questions of practical stabilizability of the nonlinear aeroelastic systems, their dependence on completeness and types of measurements and robustness of the controllers.


2018 ◽  
Vol 180 ◽  
pp. 02086
Author(s):  
Pavel Procházka ◽  
Václav Uruba ◽  
Luděk Pešek ◽  
VÍtězslav Bula

The motivation of this paper is the continual development of the blades for the last stage of the steam turbine. The biggest problem is the slenderness of such blades and the extreme sensitivity to aeroelastic vibrations (flutter) caused by the instabilities present in the flow. This experimental research is dealing with the aeroelastic binding of the moving blades located in the blade grid with the flow field and vice versa. A parallelogram is used to ensure one order of freedom of the blade. The grid has five blades in total, three of them are driven by force control using three shakers. The deviation as well as force response is measured by strain gauges and dynamometers. The flow field statistical as well as dynamical characteristics are measured by optical method Particle Image Velocimetry. The grid is connected to the blow-down wind tunnel with velocity range up to 40 m/s. The aeroelastic binding is investigated in dependency on used actuation frequency and maximal amplitude (the intensity of force actuation) and on different Reynolds numbers. The flow field and the wake behind each individual blade are studied and the maximal interaction is examined for individual inter-blade phase angle of the grid.


Sign in / Sign up

Export Citation Format

Share Document