Analysis of a Wing–Fuselage Biplane with Trailing-Edge Flaps in Low-Speed Flow

2021 ◽  
pp. 1-14
Author(s):  
Thai Duong Nguyen ◽  
Masashi Kashitani ◽  
Kazuhiro Kusunose ◽  
Masato Taguchi ◽  
Yoshihiro Takita
2011 ◽  
Vol 689 ◽  
pp. 317-356 ◽  
Author(s):  
Sina Ghaemi ◽  
Fulvio Scarano

AbstractThe unsteady organization and evolution of coherent structures within the turbulent boundary layer and subsequent wake of the sharp symmetric trailing edge of a NACA0012 aerofoil are investigated. The experiments are conducted in an open test-section wind tunnel at ${\mathit{Re}}_{c} = \text{386\hspace{0.167em}000} $ based on the aerofoil chord and ${\mathit{Re}}_{\theta } = 1300$ based on the boundary layer momentum thickness. An initial characterization of the flow field using two-component particle image velocimetry (PIV) is followed by the investigation of the unsteady organization and evolution of coherent structures by time-resolved three-dimensional PIV based on a tomographic approach (Tomo-PIV). The inspection of the turbulent boundary layer prior to the trailing edge in the region between 0.15 and $0. 8\hspace{0.167em} {\delta }_{99} $ demonstrated streaks of low- and high-speed flow, while the low-speed streaks are observed to be more coherent along with strong interaction with hairpin-type vortical structures similar to a turbulent boundary layer at zero pressure gradient. The wake region demonstrated gradual deterioration of both the low- and the high-speed streaks with downstream progress. However, the low-speed streaks are observed to lose their coherence at a faster rate relative to the high-speed streaks as the turbulent flow develops towards the far wake. The weakening of the low-speed streaks is due to the disappearance of the viscous sublayer after the trailing edge and gradual mixing through the transport of the remaining low-speed flow towards the free stream. This transport of low-speed flow is performed by the ejection events induced by the hairpin vortices as they also persist into the developing wake. The higher persistence of the high-speed streaks is associated with counter-hairpin vortical activities as they oppose the deterioration of the high-speed streaks by frequently sweeping the high-speed flow towards the wake centreline. These vortical structures are regarded as counter-hairpin vortices as they exhibit opposite characteristics relative to the hairpin vortices of a turbulent boundary layer. They are topologically similar to the hairpins as they appear to be U-shaped but with inverted orientation, as the spanwise portion is in the vicinity of the wake centreline and the legs are inclined at an approximately $6{0}^{\ensuremath{\circ} } $ to the wake axis in the downstream direction demonstrating a strain-dominated topology. The counter-hairpin vortices are partially wrapped around the high-speed streaks and contribute to the wake development by transporting high-speed flow towards the wake centreline. Similar to the hairpin vortices of a turbulent boundary layer, the occurrence of a complete counter-hairpin vortex is occasional while its derivatives (portions of spanwise or quasi-streamwise vortices) are more frequently observed. Therefore, a pattern recognition algorithm is applied to establish characterization based on an ensemble-averaged counter-hairpin vortex. The formation of the counter-hairpin vortices is due to an additional degree of interaction between the low- and high-speed streaks after the trailing edge across the wake centreline. The shear layer produced along the wake centreline by neighbouring low- and high-speed streaks promotes the formation of spanwise vortices that form the counter-hairpin vortices by connection to quasi-streamwise vortices. Finally, a conceptual model is proposed to depict the three-dimensional unsteady organization and evolution of coherent structures in the wake region based on the hairpin and counter-hairpin vortex signatures.


1999 ◽  
Vol 10 (11) ◽  
pp. 855-871
Author(s):  
MICHAEL G. SPENCER ◽  
ROBERT M. SANNER ◽  
INDERJIT CHOPRA

Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 828
Author(s):  
Igor Rodriguez-Eguia ◽  
Iñigo Errasti ◽  
Unai Fernandez-Gamiz ◽  
Jesús María Blanco ◽  
Ekaitz Zulueta ◽  
...  

Trailing edge flaps (TEFs) are high-lift devices that generate changes in the lift and drag coefficients of an airfoil. A large number of 2D simulations are performed in this study, in order to measure these changes in aerodynamic coefficients and to analyze them for a given Reynolds number. Three different airfoils, namely NACA 0012, NACA 64(3)-618, and S810, are studied in relation to three combinations of the following parameters: angle of attack, flap angle (deflection), and flaplength. Results are in concordance with the aerodynamic results expected when studying a TEF on an airfoil, showing the effect exerted by the three parameters on both aerodynamic coefficients lift and drag. Depending on whether the airfoil flap is deployed on either the pressure zone or the suction zone, the lift-to-drag ratio, CL/CD, will increase or decrease, respectively. Besides, the use of a larger flap length will increase the higher values and decrease the lower values of the CL/CD ratio. In addition, an artificial neural network (ANN) based prediction model for aerodynamic forces was built through the results obtained from the research.


1979 ◽  
Vol 18 ◽  
pp. 271-323 ◽  
Author(s):  
J.-D. Vagt
Keyword(s):  
Hot Wire ◽  

2016 ◽  
Author(s):  
Eva Jost ◽  
Annette Fischer ◽  
Galih Bangga ◽  
Thorsten Lutz ◽  
Ewald Krämer

Abstract. The present study investigates the impact of unsteady and viscous 3D aerodynamic effects on a wind turbine blade with trailing edge flap by means of Computational Fluid Dynamics (CFD). Harmonic oscillations are simulated on the DTU 10 MW rotor with a morphing flap of 10 % chord extent ranging from 70 % to 80 % blade radius. The deflection frequency is varied in the range between 1 p and 6 p. To quantify 3D effects, rotor simulations are compared to 2D airfoil computations and the 2D theory by Theodorsen. A significant influence of trailing and shed vortex structures has been found which leads to an amplitude reduction and hysteresis of the lift response in the flap section with regard to the deflection signal. For the 3D rotor results greater amplitude reductions and a less pronounced hysteresis is observed compared to the 2D airfoil case. Blade sections neighboring the flap experience however an opposing impact and hence partly compensate the negative effect of trailing vortices in the flap section in respect to integral loads. The comparison to steady flap deflections at the 3D rotor revealed the high influence of dynamic inflow effects.


2020 ◽  
Author(s):  
Sirko Bartholomay ◽  
Tom T. B. Wester ◽  
Sebastian Perez-Becker ◽  
Simon Konze ◽  
Christian Menzel ◽  
...  

Abstract. This experimental load control study presents results of an active trailing edge flap feedforward controller for wind turbine applications. The controller input is derived from pressure based lift estimation methods that rely either on a quasi-steady method, based on a three-hole probe, or on an unsteady method that is based on three selected surface pressure ports. Furthermore, a standard feedback controller, based on force balance measurements, is compared to the feedforward control. A Clark-Y airfoil is employed for the wing that is equipped with a trailing edge flap of x/c = 30 % chordwise extension. Inflow disturbances are created by a two-dimensional active grid. The Reynolds number is Re = 290,000 and reduced frequencies of k = 0.07 up to k = 0.32 are analyzed. Within the first part of the paper, the lift estimation methods are compared. The surface pressure based method shows generally more accurate results whereas the three-hole probe estimate overpredicts the lift amplitudes with increasing frequencies. Nonetheless, employing the latter as input to the feedforward controller is more promising as a beneficial phase lead is introduced by this method. A successful load alleviation was achieved up to reduced frequencies of k = 0.192.


Sign in / Sign up

Export Citation Format

Share Document