Effect of Orientation Deviation on Resonance Characteristics of Single Crystal Turbine Blades

AIAA Journal ◽  
2020 ◽  
Vol 58 (6) ◽  
pp. 2673-2681
Author(s):  
Y. C. Zhao ◽  
H. S. Gao ◽  
Z. X. Wen ◽  
Y. Q. Yang ◽  
J. J. Wang ◽  
...  
2021 ◽  
pp. 3-15
Author(s):  
N.V. Petrushin ◽  
◽  
E.M. Visik ◽  
E.S. Elyutin ◽  
◽  
...  

Results of design and experimental studies of a nickel-based superalloy VZhL20 with a density of 8.04 g/cm3 for the manufacture of turbine blades with a columnar granular structure and a single-crystal structure are presented. It is shown that alloy VZHL20 with a single-crystal structure of the crystallographic orientation [001] in the heat-treated state possesses high phase stability, and enhanced short-term strength ( = 950 MPa, = 1130 MPa), and long-term strength ( = 340 MPa, = 185 MPa).


2021 ◽  
Vol 1035 ◽  
pp. 819-826
Author(s):  
Hai Peng Jin ◽  
Shi Zhong Liu ◽  
Hong Ji Xie ◽  
Jia Rong Li

Numerical simulation and prediction of grain formation and defects, including the stray grain and high angle orientation deviation during directional solidification process of a single crystal superalloy hollow turbine blade are experimentally conducted by means of commercial software ProCAST and backscattering scanning electron microscope. The results show that the initial nucleation amount at the beginning section of the starter block is 104 of magnitude, and the number of grains decreases gradually with the competitive growth, and the number is about 100 at the spiral of the selector. And the orientation distribution of grains is close to <001> direction, with the orientation deviation between 10° and 15°. Moreover, with the increase of withdrawal rate, the curvature of isoline of liquidus of single crystal blade increases, and the tendency to form stray grains defects increases. The grain with a large deviation from orientation blocks the growth of other grains at the first rotating transition site of the selector, and then gradually grows and solidifies to form the final blade.


2021 ◽  
Vol 1032 ◽  
pp. 178-185
Author(s):  
Wan Qiu Ding

This report outlines a succinct analysis of the contemporary casting methods in single-crystal turbine blades. Furthermore, this paper also provides an examination of the solidification procedure in mixed turbine blades. The couple cooling and heating operation system was advanced to obtain identical thermal positions for single crystal (SC) solidification in the blade group, thereby significantly diminishing the associated flaws in the contemporary Bridgman process. The chemistry science of Nickel based alloys planed for single crystal (SC) gas turbine blades has been notably improved upon, especially when considering the initial production of alloys. The second and third production within the total operation has been enhanced by the introduction of rhenium (Re). Surged density, grain flaws, and microstructural stableness have presented themselves as significant issues within this process. Additionally, it is imperative to minimize the concentrations of the different alloying components.


Author(s):  
Firat Irmak ◽  
Navindra Wijeyeratne ◽  
Taejun Yun ◽  
Ali Gordon

Abstract In the development and assessment of critical gas turbine components, simulations have a crucial role. An accurate life prediction approach is needed to estimate lifespan of these components. Nickel base superalloys remain the material of choice for gas turbine blades in the energy industry. These blades are required to withstand both fatigue and creep at extreme temperatures during their usage time. Nickel-base superalloys present an excellent heat resistance at high temperatures. Presence of chromium in the chemical composition makes these alloys highly resistant to corrosion, which is critical for turbine blades. This study presents a flexible approach to combine creep and fatigue damages for a single crystal Nickel-base superalloy. Stress and strain states are used to compute life calculations, which makes this approach applicable for component level. The cumulative damage approach is utilized in this study, where dominant damage modes are capturing primary microstructural mechanism associated with failure. The total damage is divided into two distinctive modules: fatigue and creep. Flexibility is imparted to the model through its ability to emphasize the dominant damage mechanism which may vary among alloys. Fatigue module is governed by a modified version of Coffin-Manson and Basquin model, which captures the orientation dependence of the candidate material. Additionally, Robinson’s creep rupture model is applied to predict creep damage in this study. A novel crystal visco-plasticity (CVP) model is used to simulate deformation of the alloy under several different types of loading. This model has capability to illustrate the temperature-, rate-, orientation-, and history-dependence of the material. A user defined material (usermat) is created to be used in ANSYS APDL 19.0, where the CVP model is applied by User Programmable Feature (UPF). This deformation model is constructed of a flow rule and internal state variables, where the kinematic hardening phenomena is captured by back stress. Octahedral, cubic and cross slip systems are included to perform simulations in different orientations. An implicit integration process that uses Newton-Raphson iteration scheme is utilized to calculate the desired solutions. Several tensile, low-cycle fatigue (LCF) and creep experiments were conducted to inform modeling parameters for the life prediction and the CVP models.


2020 ◽  
Vol 9 (3) ◽  
pp. 3348-3356
Author(s):  
Eun-Hee Kim ◽  
Hye Yeong Park ◽  
Cho-long Lee ◽  
Jong Bum Park ◽  
SeungCheol Yang ◽  
...  

2013 ◽  
Vol 203-204 ◽  
pp. 177-180 ◽  
Author(s):  
Arkadiusz Onyszko ◽  
Jan Sieniawski ◽  
Włodzimierz Bogdanowicz ◽  
Hans Berger

The article presents the comparison of two methods: classical X-ray topography and the modern automatic X-ray OD-EFG diffractometer. Both methods were applied to study the crystal orientation of turbine blades of single crystal nickel-based superalloys. The solidification of a hollow assembly structure for 5 various blades was carried out by the Bridgman method at the Research and Development Laboratory for Aerospace Materials at Rzeszow University of Technology using an ALD Vacuum Technologies vacuum furnace. Ceramic moulds made of Al2O3 were used. The alloy temperature during casting into the mould amounted to 1550°C. The specimens for Laue method tests were cut out from the blades at withdrawal rates of 1, 2, 3, 4, and 5 mm/min.


Sign in / Sign up

Export Citation Format

Share Document