Heat Transfer and Recovery Factor of Aerodynamic Heating on a Flared Cone

AIAA Journal ◽  
2021 ◽  
pp. 1-9
Author(s):  
Mingjie Zhang ◽  
Wufei Si ◽  
Cunbiao Lee
Author(s):  
Michele Ferraiuolo ◽  
Oronzio Manca ◽  
Aniello Riccio

Next generation reusable re-entry vehicles must be capable of sustaining consistent repeated aero-thermal loads without damage or deterioration. This means that such structures must tolerate the high temperatures engendered by aero-thermal re-entry fluxes due to the establishment of a hypersonic regime over the body. Thermal Protection Systems (TPS) are used to maintain a reusable launch vehicle’s structural temperature within acceptable limits during re-entry flights; that is, internal temperature should not overcome the temperature limit use of the internal structure. TPS are usually composed by several layers made of different materials. Heat transfer through a multilayer insulation during atmospheric re-entry involves combined modes of heat transfer: heat conduction through the solid, heat radiation to the outer space etc. In the frame of TPS design activities a procedure based on one dimensional analytical solutions of transient nonlinear analyses has been developed in order to estimate the temperature variation with time and space of a multilayered body subjected to aerodynamic heating inside a radiating space. Since internal temperature values of TPSs of re-entry vehicles cannot exceed certain values, that procedure allows to quickly evaluate those temperature values and to preliminary size layer thicknesses before preparing and performing Finite Element analyses.


2012 ◽  
Vol 116 (1183) ◽  
pp. 873-893 ◽  
Author(s):  
M. Mifsud ◽  
D. Estruch-Samper ◽  
D. MacManus ◽  
R. Chaplin ◽  
J. Stollery

Abstract A Parabolised Navier-Stokes (PNS) flow solver is used to predict the aerodynamic heating on the surface of a hypersonic vehicle. This case study highlights some of the main heat flux sensitivies to various conditions for a full-scale vehicle and illustrates the use of different complimentary methods in assessing the heat load for a realistic application. Different flight phases of the vehicle are considered, with freestream conditions from Mach 4 to Mach 8 across a range of altitudes. Both laminar and turbulent flows are studied, together with the effect of the isothermal wall temperature, boundary-layer transition location and body incidence. The effect of the Spalart-Allmaras and Baldwin-Lomax turbulent models on the heat transfer distributions is assessed. A rigorous assessment of the computations is conducted through both iterative and grid convergence studies and a supporting experimental investigation is performed on a 1/20th scale model of the vehicle’s forebody for the validation of the numerical results. Good agreement is found between the PNS predictions, measurements and empirical methods for the vehicle forebody. The present PNS approach is shown to provide useful predictions of the heat transfer over the axisymmetric vehicle body. A highly complex flow field is predicted in the fin-body-fin region at the rear of the vehicle characterised by strong interference effects which limit the predictions over this region to a predominately qualitative level.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Masato Taguchi ◽  
Koichi Mori ◽  
Yoshiaki Nakamura

In this study, the distribution of surface heat transfer induced by dual side-jets injected into a hypersonic flow has been visualized using a temperature sensitive paint. The experiments were performed in both tandem and parallel injector arrangements, and the spacing between the injection holes was taken as a parameter in each arrangement. As a result, the aerodynamic heating in the separated region of the boundary layer and in the horseshoe vortex was clearly visualized. In the tandem arrangements, heat transfer remarkably increased immediately upstream of the front injector. The distributions and the intensity of surface heat transfer were similar to those caused by the single injection. On the other hand, in the parallel arrangements, the extent of the separation nearly doubled, and the maximum heat flux decreased to less than half of that from the single injection. The global distribution of heat transfer varied significantly as the injector spacing was changed. When the injectors were positioned with a large spacing, the interaction between the side-jets was relatively lowered, and thus distribution, as for the single injector, was induced around each injection hole individually. In contrast, with a short spacing, the dual injection behaved as a single obstacle. The most effective reduction of maximum heat flux was achieved with an intermediate injector spacing.


AIAA Journal ◽  
1963 ◽  
Vol 1 (2) ◽  
pp. 497-498 ◽  
Author(s):  
TUDOR SPRINKS

Author(s):  
Byung Gi Kim ◽  
Man Sun Yu ◽  
Hyung Hee Cho ◽  
Ki Young Hwang ◽  
Joo Chan Bae

An experimental investigation has been carried out to examine heat transfer characteristics of an axisymmetric, under-expanded, and sonic jet impinging on a flat plate. Distributions of recovery factor and the surface pressure on the flat plate have been obtained in detail. The ratio of nozzle exit pressure to the ambient pressure, i.e., under-expansion ratio ranges from 1.5 to 3.5 and the nozzle-to-plate distance is tested from 0.5 to 20.0 nozzle exit diameters. It has been found that the recovery factor varies from 0.35 up to over 1.25 depending on both parameters of interest within the present experimental range.


1968 ◽  
Vol 90 (4) ◽  
pp. 596-600 ◽  
Author(s):  
A. L. Laganelli ◽  
J. P. Hartnett

Heat transfer results are reported for a transpiration cooled porous flat plate placed in a stream of air and in a stream of CO2. The tests were performed at a Mach number of 1.96 over a range of effective length Reynolds number, from 5 million to 9.1 million, when CO2 was used as the free stream gas. A Mach number of 2.53 for an effective length Reynolds number range of 5.3 million to 8.3 million was characteristic when the free stream gas was air. The heat transfer data were normalized and presented as the ratio of the Stanton number to the no-blowing Stanton value (St/St0) as a function of the dimensionless transpiration rate F/St0. The recovery factor data were also normalized and presented as the ratio of r/r0 as a function of the transpiration rate F. The results for both the air and the CO2 free stream flows showed a reduction in heat transfer with increasing transpiration rate, using air and CO2 as the injectant gases. The measured recovery factor and the normalized recovery factor also decreased with increasing transpiration for the reported gas combinations. It was found that Rubesin’s air theory adequately predicts all of the heat transfer results including those obtained in CO2 atmospheres within the reported Mach number range. Also, the empirical theories which predict recovery factor results for air free streams can be used for air or CO2 injection into a CO2 free stream gas.


Sign in / Sign up

Export Citation Format

Share Document