Numerical Study of a Wing-Tip Vortex Using the Euler Equations

2001 ◽  
Vol 38 (1) ◽  
pp. 22-27 ◽  
Author(s):  
Robert E. Spall
Author(s):  
Ricardo Hernandez-Rivera ◽  
Abel Hernandez-Guerrero ◽  
Cuauhtemoc Rubio-Arana ◽  
Raul Lesso-Arroyo

Recent studies have shown that the use of winglets in aircrafts wing tips have been able to reduce fuel consumption by reducing the lift-induced drag caused by wing tip vortex. This paper presents a 3-D numerical study to analyze the drag and lift forces, and the behavior of the vortexes generated in the wing tips from a modified commercial Boeing aircraft 767-300/ER. This type of aircraft does not contain winglets to control the wing tip vortex, therefore, the aerodynamic effects were analyzed adding two models of winglets to the wing tip. The first one is the vortex diffuser winglet and the second one is the tip fence winglet. The analyses were made for steady state and compressible flow, for a constant Mach number. The results show that the vortex diffuser winglet gives the best results, reducing the core velocity of the wing tip vortex up to 19%, the total drag force of the aircraft up to 3.6% and it leads to a lift increase of up to 2.4% with respect to the original aircraft without winglets.


Author(s):  
David Greenblatt ◽  
LaTunia Melton ◽  
Chung-Sheng Yao ◽  
Jerome Harris

1996 ◽  
Author(s):  
Andreas Vogt ◽  
Peter Baumann ◽  
Juergen Kompenhans ◽  
Morteza Gharib
Keyword(s):  

2019 ◽  
Vol 9 (3) ◽  
pp. 600 ◽  
Author(s):  
Qing Wang ◽  
Qijun Zhao

To study the three-dimensional effects on the dynamic-stall characteristics of a rotor blade, the unsteady flowfields of the finite wing and rotor were simulated under dynamic-stall conditions, respectively. Unsteady Reynolds-averaged Navier–Stokes (URANS) equations coupled with a third-order Roe–MUSCL spatial discretization scheme were chosen as the governing equations to predict the three-dimensional flowfields. It is indicated from the simulated results of a finite wing that dynamic stall would be restricted near the wing tip due to the influence of the wing-tip vortex. By comparing the simulated results of the finite wing with the spanwise flow, it is indicated that the spanwise flow would arouse vortex accumulation. Consequently, the dynamic stall is restricted near the wing root and aggravated near the wing tip. By comparing the simulated results of a rotor in forward flight, it is indicated that the dynamic stall of the rotor would be inhibited due to the effects of the spanwise flow and Coriolis force. This work fills the gap regarding the insufficient three-dimensional dynamic stall of a helicopter rotor, and could be used to guide rotor airfoil shape design in the future.


Sign in / Sign up

Export Citation Format

Share Document