Bifurcation buckling of circular cylindrical shells under uniform external pressure

AIAA Journal ◽  
1989 ◽  
Vol 27 (2) ◽  
pp. 242-248 ◽  
Author(s):  
Tatsuzo Koga ◽  
Shigeyuki Morimatsu
1974 ◽  
Vol 96 (4) ◽  
pp. 1322-1327
Author(s):  
Shun Cheng ◽  
C. K. Chang

The buckling problem of circular cylindrical shells under axial compression, external pressure, and torsion is investigated using a displacement function φ. A governing differential equation for the stability of thin cylindrical shells under combined loading of axial compression, external pressure, and torsion is derived. A method for the solutions of this equation is also presented. The advantage in using the present equation over the customary three differential equations for displacements is that only one trial solution is needed in solving the buckling problems as shown in the paper. Four possible combinations of boundary conditions for a simply supported edge are treated. The case of a cylinder under axial compression is carried out in detail. For two types of simple supported boundary conditions, SS1 and SS2, the minimum critical axial buckling stress is found to be 43.5 percent of the well-known classical value Eh/R3(1−ν2) against the 50 percent of the classical value presently known.


2004 ◽  
Vol 10 (4) ◽  
pp. 343-349 ◽  
Author(s):  
X. W. Zhao ◽  
J. H. Luo ◽  
M. Zheng ◽  
H. L. Li ◽  
M. X. Lu

1993 ◽  
Vol 115 (3) ◽  
pp. 268-274 ◽  
Author(s):  
N. Miyazaki ◽  
S. Hagihara

In the present work, analytical and experimental investigations were performed on creep buckling. Special attention was focussed on bifurcation behavior during creep deformation. The finite element method was used to analyze creep buckling of circular cylindrical shells without initial imperfection. The number of circumferential waves obtained from the analyses agrees well with those of the experiments. The present experimental investigation shows that the circumferential waves are suddenly caused near a bulge. It is also found that there is no correlation between the wavelength of the circumferential waves observed at creep buckling and that of the circumferential initial imperfection. Deformation patterns at the bifurcation creep buckling obtained from the analyses are analogous to those of the experiments. It is concluded from the analyses and the experiments that the circumferential waves observed in creep buckling experiments are due to bifurcation buckling during creep deformation.


2014 ◽  
Vol 36 (3) ◽  
pp. 201-214
Author(s):  
Dao Van Dung ◽  
Vu Hoai Nam

Based on the classical thin shell theory with the geometrical nonlinearity in von Karman-Donnell sense, the smeared stiffener technique and Galerkin method, this paper deals with the nonlinear dynamic problem of eccentrically stiffened functionally graded circular cylindrical shells subjected to time dependent axial compression and external pressure by analytical approach. The present novelty is that an approximate three-term solution of deflection taking into account the nonlinear buckling shape is chosen, the nonlinear dynamic second-order differential three equations system is established and the frequency-amplitude relation of nonlinear vibration is obtained in explicit form.


Sign in / Sign up

Export Citation Format

Share Document