Nanometer-scale spontaneous vibrations in a deployable truss under mechanical loading

AIAA Journal ◽  
2002 ◽  
Vol 40 ◽  
pp. 2070-2076
Author(s):  
L. M. R. Hardaway ◽  
L. D. Peterson
AIAA Journal ◽  
2002 ◽  
Vol 40 (10) ◽  
pp. 2070-2076 ◽  
Author(s):  
Lisa M. R. Hardaway ◽  
Lee D. Peterson

Author(s):  
Jeff Gelles

Mechanoenzymes are enzymes which use a chemical reaction to power directed movement along biological polymer. Such enzymes include the cytoskeletal motors (e.g., myosins, dyneins, and kinesins) as well as nucleic acid polymerases and helicases. A single catalytic turnover of a mechanoenzyme moves the enzyme molecule along the polymer a distance on the order of 10−9 m We have developed light microscope and digital image processing methods to detect and measure nanometer-scale motions driven by single mechanoenzyme molecules. These techniques enable one to monitor the occurrence of single reaction steps and to measure the lifetimes of reaction intermediates in individual enzyme molecules. This information can be used to elucidate reaction mechanisms and determine microscopic rate constants. Such an approach circumvents difficulties encountered in the use of traditional transient-state kinetics techniques to examine mechanoenzyme reaction mechanisms.


Author(s):  
R. T. Chen ◽  
R.A. Norwood

Sol-gel processing has been used to control the structure of a material on a nanometer scale in preparing advanced ceramics and glasses. Film coating using the sol-gel process was also found to be a viable process technology in applications such as optical, porous, antireflection and hard coatings. In this study, organically modified silicate (Ormosil) coatings are applied to PET films for various industrial applications. Sol-gel materials are known to exhibit nanometer scale structures which havepreviously been characterized by small-angle X-ray scattering (SAXS), neutron scattering and light scattering. Imaging of the ultrafine sol-gel structures has also been performed using an ultrahigh resolution replica/TEM technique. The objective of this study was to evaluate the ultrafine structures inthe sol gel coatings using a direct imaging technique: atomic force microscopy (AFM). In addition, correlation of microstructures with processing parameters, coating density and other physical properties will be discussed.The materials evaluated are organically modified silicate coatings on PET film substrates. Refractive index measurement by the prism coupling method was used to assess density of the sol-gel coating.AFM imaging was performed on a Nanoscope III AFM (by Digital Instruments) using constant force mode. Solgel coating samples coated with a thin layer of Ft (by ion beam sputtering) were also examined by STM in order to confirm the structures observed in the contact type AFM. In addition, to compare the previous results, sol-gel powder samples were also prepared by ultrasonication followed by Pt/Au shadowing and examined using a JEOL 100CX TEM.


2019 ◽  
Author(s):  
Stephanie Borg ◽  
Nevena Krstic ◽  
Harriet Buckley ◽  
Elizabeth Curtis ◽  
Cyrus Cooper ◽  
...  

2012 ◽  
Vol 60 (2) ◽  
pp. 205-213
Author(s):  
K. Dems ◽  
Z. Mróz

Abstract. An elastic structure subjected to thermal and mechanical loading with prescribed external boundary and varying internal interface is considered. The different thermal and mechanical nature of this interface is discussed, since the interface form and its properties affect strongly the structural response. The first-order sensitivities of an arbitrary thermal and mechanical behavioral functional with respect to shape and material properties of the interface are derived using the direct or adjoint approaches. Next the relevant optimality conditions are formulated. Some examples illustrate the applicability of proposed approach to control the structural response due to applied thermal and mechanical loads.


Sign in / Sign up

Export Citation Format

Share Document