scholarly journals Time-optimal attitude control scheme for a spinning missile

1993 ◽  
Vol 16 (2) ◽  
pp. 346-353 ◽  
Author(s):  
E. Jahangir ◽  
R. M. Howe
2018 ◽  
Vol 41 (1) ◽  
pp. 199-211 ◽  
Author(s):  
Karmvir Singh Phogat ◽  
Debasish Chatterjee ◽  
Ravi Banavar

2017 ◽  
Vol 64 (8) ◽  
pp. 6350-6361 ◽  
Author(s):  
Zongyi Guo ◽  
Jun Zhou ◽  
Jianguo Guo ◽  
Jerome Cieslak ◽  
Jing Chang

2012 ◽  
Vol 263-266 ◽  
pp. 584-587
Author(s):  
Xu Guang Hou ◽  
Jian Yan ◽  
Jin Jin ◽  
Shun Liang Mei

Aiming at a three-axis stabilized microsatellite, a novel attitude control method, called magnetorquer based vertical damping, is proposed to avoid the occurrence of the worst situation that the non-solar-battery-plane spins towards the sun. DSP based simulation results based on DSP show that the vertical damping method outperforms the simple damping method when no orbit information is available, simultaneously the whole attitude control scheme is simple and effective. The proposed solution guarantees a stable power supply from the electrical source even under the extreme situation, which improves the reliability of the whole microsatellite system.


2015 ◽  
Vol 76 (12) ◽  
Author(s):  
Fadzilah Hashim ◽  
Mohd Yusoff Mashor ◽  
Siti Maryam Sharun

This paper presents a study on the estimator based on Linear Quadratic Regulator (LQR) control scheme for Innovative Satellite (InnoSAT). By using LQR control scheme, the controller and the estimator has been derived for state space form in all three axes to stabilize the system’s performance. This study starts by converting the transfer functions of attitude control into state space form.  Then, the step continues by finding the best value of weighting matrices of LQR in order to obtain the best value of controller gain, K. After that, the best value of L is obtained for the estimator gain. The value of K and L is combined in forming full order compensator and in the same time the reduced order compensator is also formed. Lastly, the performance of full order compensator is compared to reduced order compensator. From the simulation, results indicate that both types of estimators have presented good stability and tracking performance. However, reduced order estimator has simpler equation and faster convergence to zero than the full order estimator. This property is very important in developing a satellite attitude control for real-time implementation.


2012 ◽  
Vol 468-471 ◽  
pp. 704-707
Author(s):  
Sheng Bin Hu ◽  
Wen Hua Lu ◽  
Zhi Yi Chen ◽  
Lei Lei ◽  
Yi Xuan Zhang

An adaptive Double Fuzzy Sliding Mode Control scheme for attitude control of Flapping Wing Micro Aerial Vehicle is proposed in this paper. Based on the feedback linearization technique, a sliding mode controller is designed. To faster response speed, a fuzzy controller is designed to adaptively tune the slope of sliding mode surface. To reduce the chattering, another fuzzy controller is designed to adaptively tune the switch part of sliding mode control. The system stability is proved by Lyapunov principle. Simulation results show that the proposed control scheme is effective.


Author(s):  
Ramin Masoudi ◽  
Mojtaba Mahzoon

A free-floating space robot with four linkages, two flexible arms and a rigid end-effector that are mounted on a rigid spacecraft; is studied in this paper. The governing equations are derived using Kane’s method. The powerful tools of Kane’s approach in incorporating motion constraints have been applied in the dynamic model. By including the motion constraints in the kinematic and dynamic equations, a two way coupling between the spacecraft motion and manipulator motion is achieved. The assumed mode method is employed to express elastic displacements, except that the associated admissible functions are supplanted by quasicomparison functions. By a perturbation approach, the resulting nonlinear problem is separated into two sets of equations: one for rigid-body maneuvering of the robot and the other for elastic vibrations suppression and rigid-body perturbation control. The kinematic redundancy of the manipulator system is removed by exploiting the conservation of angular momentum law that makes the rigid manipulator system nonholonimic. Nonholonomic constraints, resulted from the nonintegrability of angular momentum, in association with equations obtained from conservation of linear momentum and direct differential kinematics generate a set of ordinary differential equations that govern the motion tracking of the robot. The digitalized linear quadratic regulator (LQR) with prescribed degree of stability is used as the feedback control scheme to suppress vibrations. A numerical example is presented to show the numerical preferences of using Kane’s method in deriving the equations of motion and also the efficacy of the control scheme. Acquiring a zero magnitude for spacecraft attitude control moment approves the free-floating behavior of the space robot in which considerable amount of energy is saved.


1984 ◽  
Vol 106 (1) ◽  
pp. 75-81 ◽  
Author(s):  
M. H. Raibert ◽  
H. B. Brown

The ability to balance is important to the mobility obtained by legged creatures found in nature, and may someday lead to versatile legged vehicles. In order to study the role of balance in legged locomotion and to develop appropriate control strategies, a 2D hopping machine was constructed for experimentation. The machine has one leg on which it hops and runs, making balance a prime consideration. Control of the machine’s locomotion was decomposed into three separate parts: a vertical height control part, a horizontal velocity part, and an angular attitude control part. Experiments showed that the three part control scheme, while very simple to implement, was powerful enough to permit the machine to hop in place, to run at a desired rate, to translate from place to place, and to leap over obstacles. Results from modeling and computer simulation of a similar one-legged device are described by Raibert [10].


Sign in / Sign up

Export Citation Format

Share Document