Experiments in Balance With a 2D One-Legged Hopping Machine

1984 ◽  
Vol 106 (1) ◽  
pp. 75-81 ◽  
Author(s):  
M. H. Raibert ◽  
H. B. Brown

The ability to balance is important to the mobility obtained by legged creatures found in nature, and may someday lead to versatile legged vehicles. In order to study the role of balance in legged locomotion and to develop appropriate control strategies, a 2D hopping machine was constructed for experimentation. The machine has one leg on which it hops and runs, making balance a prime consideration. Control of the machine’s locomotion was decomposed into three separate parts: a vertical height control part, a horizontal velocity part, and an angular attitude control part. Experiments showed that the three part control scheme, while very simple to implement, was powerful enough to permit the machine to hop in place, to run at a desired rate, to translate from place to place, and to leap over obstacles. Results from modeling and computer simulation of a similar one-legged device are described by Raibert [10].

Robotica ◽  
2014 ◽  
Vol 33 (4) ◽  
pp. 898-919 ◽  
Author(s):  
Panfeng Huang ◽  
Dongke Wang ◽  
Zhongjie Meng ◽  
Zhengxiong Liu

SUMMARYThis paper presents a novel scheme for achieving attitude control of a tumbling combination system in the post-capture phase of a tethered space robot (TSR). Given the combination rotation characteristics, tether force is applied to provide greater control torques for stabilising the attitude. The proposed control scheme involves two attitude controllers, which coordinate the controller of the tether force and thruster force and the controller of single thruster force. The numerical simulations include a comparison between this coordinated control and the traditional thruster control and a sensitivity analysis on initial values of parameters. Simulation results validate the feasibility of the attitude control scheme for a tumbling combination system, and fuel consumption of the attitude control is efficiently reduced using the coordinated control strategies.


Author(s):  
Sergio F. A. Batista ◽  
Deepak Ingole ◽  
Ludovic Leclercq ◽  
Monica Menendez

Robotica ◽  
2020 ◽  
pp. 1-26
Author(s):  
Tao Xue ◽  
ZiWei Wang ◽  
Tao Zhang ◽  
Ou Bai ◽  
Meng Zhang ◽  
...  

SUMMARY Accurate torque control is a critical issue in the compliant human–robot interaction scenario, which is, however, challenging due to the ever-changing human intentions, input delay, and various disturbances. Even worse, the performances of existing control strategies are limited on account of the compromise between precision and stability. To this end, this paper presents a novel high-performance torque control scheme without compromise. In this scheme, a new nonlinear disturbance observer incorporated with equivalent control concept is proposed, where the faster convergence and stronger anti-noise capability can be obtained simultaneously. Meanwhile, a continuous fractional power control law is designed with an iteration method to address the matched/unmatched disturbance rejection and global finite-time convergence. Moreover, the finite-time stability proof and prescribed control performance are guaranteed using constructed Lyapunov function with adding power integrator technique. Both the simulation and experiments demonstrate enhanced control accuracy, faster convergence rate, perfect disturbance rejection capability, and stronger robustness of the proposed control scheme. Furthermore, the evaluated assistance effects present improved gait patterns and reduced muscle efforts during walking and upstair activity.


Microbiology ◽  
2014 ◽  
Vol 160 (9) ◽  
pp. 1821-1831 ◽  
Author(s):  
Viveshree S. Govender ◽  
Saiyur Ramsugit ◽  
Manormoney Pillay

Adhesion to host cells is a precursor to host colonization and evasion of the host immune response. Conversely, it triggers the induction of the immune response, a process vital to the host’s defence against infection. Adhesins are microbial cell surface molecules or structures that mediate the attachment of the microbe to host cells and thus the host–pathogen interaction. They also play a crucial role in bacterial aggregation and biofilm formation. In this review, we discuss the role of adhesins in the pathogenesis of the aetiological agent of tuberculosis, Mycobacterium tuberculosis. We also provide insight into the structure and characteristics of some of the characterized and putative M. tuberculosis adhesins. Finally, we examine the potential of adhesins as targets for the development of tuberculosis control strategies.


1990 ◽  
Vol 23 (8) ◽  
pp. 11-15
Author(s):  
V.A. Sarchey ◽  
V.V. Sazonov ◽  
M.Yu. Belyaev ◽  
S.G. Zykov ◽  
V.M. Stazhkov ◽  
...  

2014 ◽  
Vol 2 (1) ◽  
pp. 20-25
Author(s):  
Ruba Abuamsha ◽  
Hajaj Hajjeh ◽  
Mazen Salman

The overwintering modes of E. necator were studied on Palestinian vineyards, through observations on the differentiation and maturation of cleistothecia and on the occurrence of flag-shoots (deriving from overwintering mycelium) in vineyards. Field surveys were carried out in 17 vineyards for the presence of Flag shoots and cleistothecia, both forms were not observed. Genetic structure and composition of E. necator populations were investigated by application of already available SCAR (Sequence Characterized Amplified Region) primers specific for the "flag-shoot" and "ascospore" biotypes. These primers were used to evaluate the dynamics of the spatial and temporal distribution of the two biotypes, into fungal populations present in 8 vineyards, with different cultivars and spray histories, in various Palestinian districts (Hebron, Bethlehem, Jerusalem, Ramallah, Jericho, Nablus, Jenin, Tulkarm). 397 samples were analyzed by the uses of the primer pairs UnE-UnF in PCR reactions. All samples were found to be of the ascospore biotypes. This finding shows that the “flag shoot” biotype, appears soon after bud breaking and disappears later, while the “ascospore” biotype is more frequently associated to later infections and bunches damages. Such information would be helpful to understand the reasons underlying possible temporal evolution of the pathogen's populations in vineyards, and can have important implications for powdery mildew rationale control strategies.


1979 ◽  
Vol 2 (3) ◽  
pp. 241-246
Author(s):  
Kanichiro Kato ◽  
Shoichiro Mihara ◽  
Hidetoshi Nakamura
Keyword(s):  

2019 ◽  
Vol 27 (1) ◽  
pp. 241-266
Author(s):  
FABIO SANCHEZ ◽  
JORGE ARROYO-ESQUIVEL ◽  
PAOLA VÁSQUEZ

For decades, dengue virus has caused major problems for public health officials in tropical and subtropical countries around the world. We construct a compartmental model that includes the role of hospitalized individuals in the transmission dynamics of dengue in Costa Rica. The basic reproductive number, R0, is computed, as well as a sensitivity analysis on R0 parameters. The global stability of the disease-free equilibrium is established. Numerical simulations under specific parameter scenarios are performed to determine optimal prevention/control strategies.


Sign in / Sign up

Export Citation Format

Share Document