Three-dimensional flow in deep rotating stall cells of an axial compressor

1988 ◽  
Vol 4 (3) ◽  
pp. 263-269 ◽  
Author(s):  
K. Mathioudakis ◽  
F. A. E. Breugelmans
1948 ◽  
Vol 159 (1) ◽  
pp. 255-268 ◽  
Author(s):  
A. D. S. Carter

It has long been known that the energy losses occurring in an axial compressor or turbine cannot be fully accounted for by the skin-friction losses on the blades and annulus walls. The difference, usually termed secondary loss, is attributed to miscellaneous secondary flows which take place in the blade row. These flows both cause losses in themselves and modify the operating conditions of the individual blade sections, to the detriment of the overall performance. This lecture analyses the three-dimensional flow in axial compressors and turbines, so that, by appreciation of the factors involved, possible methods of improving the performance can readily be investigated. The origin of secondary flow is first examined for the simple case of a straight cascade. The physical nature of the flow, and theories which enable quantitative estimates to be made, are discussed at some length. Following this, the three-dimensional flow in an annulus with a stationary blade row is examined, and, among other things, the influence of radial equilibrium on the flow pattern is noted. All physical restrictions are then removed, and the major factors governing the three-dimensional flow in an actual machine are investigated as far as is possible with existing information, particular attention being paid to the influence of a non-uniform velocity profile, tip clearance, shrouding, and boundary layer displacement. Finally the various empirical factors used in design are discussed, and the relationships between them established.


1963 ◽  
Vol 14 (2) ◽  
pp. 125-142 ◽  
Author(s):  
W. T. Howell

SummaryThe subject of three-dimensional flow in axial compressors and turbomachines has been extensively studied since 1945. This paper gives a means of calculating the approximate three-dimensional flow in an axial compressor by giving expressions for the slope of the velocity profile as a function of the axial co-ordinate. These expressions bring out the rôle of the ratio of stage inlet annulus height to stage length in the three-dimensional flow in these machines. The effect of the three-dimensional flow on the stage temperature rise at mean radius is discussed by introducing a work done factor.


2002 ◽  
Vol 5 (2) ◽  
pp. 137-144 ◽  
Author(s):  
N. Shiomi ◽  
W. X. Cai ◽  
K. Kaneko ◽  
T. Setoguchi

2006 ◽  
Vol 2006 (0) ◽  
pp. _G607-1_-_G607-4_
Author(s):  
Ken-ichiro IWAKIRI ◽  
Ryusuke OHTAGURO ◽  
Sho BONKOHARA ◽  
Yasuhiro SHIBAMOTO ◽  
Kazutoyo YAMADA ◽  
...  

Author(s):  
P. Kool ◽  
J. DeRuyck ◽  
Ch. Hirsch

The three-dimensional flow field has been measured in an axial plane downstream of a low speed axial compressor rotor with a rotated single slanted hot wire. A method is described which allows one to calculate three mutually perpendicular velocity components from hot-wire data, and use is made of the technique of periodic sampling and averaging to extract the pitchwise fluctuating flow from the stationary hot-wire signals. These data contain useful information. The radial distribution of the pitchwise averaged flow variables is compared with classical pneumatic measurements and with the results of a quasi three-dimensional finite-element calculation and a three-dimensional end-wall boundary layer calculation. Finally, the wake characteristics are given and a simple correlation is presented which allows one to determine the wake velocity defect from a single wake shape factor.


1990 ◽  
Author(s):  
Václav Cyrus

A detailed investigation of three-dimensional flow has been carried out in a low speed rear axial compressor stage with aspect ratio of 1 at the extreme off-design condition-turbine regime. Measurements were performed by means of both stationery and rotating pressure probes. The mechanism of flow in the rotor and stator blade row in the turbine regime is analysed. Comparison is made with flow mechanism at the design condition.


Author(s):  
June Chung ◽  
Jeonghwan Shim ◽  
Ki D. Lee

A CFD-based design method for transonic axial compressor blades was developed based on three-dimensional Navier-Stokes flow physics. The method starts with a three-dimensional flow analysis of an initial blade, followed by the sectional design optimization performed on a grid plane at a span station with spanwise flux components held fixed. This approach allows the sectional design to include the three-dimensional effects in compressor flows and thus overcome the difficulties associated with the use of quasi-three-dimensional flow physics in sectional designs. The “sectional three-dimensional” analysis at a span station, regardless of the initial flow condition, produced a flow solution nearly identical to the three-dimensional flow solution at the span station. After the validation of the sectional three-dimensional analysis, the developed design method was successfully applied to multiple span stations of NASA Rotor 37 blade in the inverse mode of finding a target geometry corresponding to a specified target pressure distribution. The method was also applied to optimize the adiabatic efficiencies of the blade section of Rotor 37 at 70 percent span station. The design results from two design attempts with different initial geometry indicate that there is not a lot of room for improvement for the blade section of Rotor 37 at 70 percent span station, but the present design method is capable of producing a large performance gain for a blade with lower efficiency.


1977 ◽  
Vol 99 (2) ◽  
pp. 168-179 ◽  
Author(s):  
Ch. Hirsch ◽  
P. Kool

Hot wire instrumentation and a periodic sampling and averaging technique have been used in order to measure the three-dimensional flow field behind a rotor of an axial compressor stage. A single slanted rotating wire allows the determination of the three components of the blade-to-blade velocity distribution together with informations on the turbulence level. A description is given of the measurement technique, and typical experimental results are presented.


Sign in / Sign up

Export Citation Format

Share Document