scholarly journals Vibration signature analysis of a faulted gear transmission system

1996 ◽  
Vol 12 (2) ◽  
pp. 289-295 ◽  
Author(s):  
F. K. Choy ◽  
S. Huang ◽  
J. J. Zakrajsek ◽  
R. F. Handschuh ◽  
D. P. Townsend
2003 ◽  
Vol 125 (2) ◽  
pp. 394-403 ◽  
Author(s):  
F. K. Choy ◽  
D. H. Mugler ◽  
J. Zhou

Important advancements in preventive maintenance of rotor-craft gear transmission systems are currently being sought for the development of an accurate machine health diagnostic system. Such a diagnostic system would use vibration or acoustic signals from the gear transmission system for (1) rapid on-line evaluation of gear wear or damage status, and (2) prediction of remaining gear life. Such health diagnostic capabilities would be essential for effective machine event/life management and advance warning before critical component failures. This paper demonstrates the use of vibration signature analysis procedures for health monitoring and diagnostics of a gear transmission system. The procedures used in this paper include (i) the numerical simulation of the dynamics of a gear transmission system with single and multiple tooth damage, (ii) the application of the Wigner-Ville Distribution (WVD) and the Wavelet transform in damage identification and quantification of damaged tooth based on the numerically generated vibration signal, and (iii) the application of both WVD and the Wavelet transform on experimental data at various stage of gear failure obtained from an accelerated gear damage test rig. This paper demonstrates that the developed signature analysis procedure can successfully detect faulty gears in both numerically simulated and experimental tested transmission system. General conclusions on identification and quantification of gear tooth damage are drawn based on the results of this study.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110356
Author(s):  
Hexu Yang ◽  
Xiaopeng Li ◽  
Jinchi Xu ◽  
Zemin Yang ◽  
Renzhen Chen

According to the working characteristics of a 1.5 MW wind turbine planetary gear system under complex and random wind load, a two-parameter Weibull distribution model is used to describe the distribution of random wind speed, and the time-varying load caused by random wind speed is obtained. The nonlinear dynamic model of planetary gear transmission system is established by using the lumped parameter method, and the relative relations among various components are derived by using Lagrange method. Then, the relative relationship between the components is solved by Runge Kutta method. Considering the influence of random load and stiffness ratio on the planetary gear transmission system, the nonlinear dynamic response of cyclic load and random wind load on the transmission system is analyzed. The analysis results show that the variation of the stiffness ratio makes the planetary gear have abundant nonlinear dynamics behavior and the planetary gear can get rid of chaos and enter into stable periodic motion by changing the stiffness ratio properly on the premise of ensuring transmission efficiency. For the variable pitch wind turbine, the random change of external load increases the instability of the system.


2011 ◽  
Vol 65 ◽  
pp. 177-181
Author(s):  
Jia Hong Zheng ◽  
Min Li

The inherent characteristics of the wind generators growth gearbox were solved, then the reasons which caused the gear transmission system generating dynamic incentive was analyzed, and also internal incentive and external incentive were given to 2MW wind generators gear transmission system quantitatively. On the basis of these, 2MW wind generators growth gearbox system’s vibration response caused under internal incentive and external incentive was solved and analyzed.


Author(s):  
Jingyue Wang ◽  
Haotian Wang ◽  
Lixin Guo

AbstractIn order to study the different backlash, gear damping ratio and random disturbance on dynamic behavior of gear transmission system, stochastic dynamic equations of the three-degree-of-freedom spur gear transmission system are established considering random disturbances of a low-frequency external excitation induced by torque fluctuation, gear damping ratio, gear backlash, excitation frequency and meshing stiffness. Using bifurcation diagram, phase diagram, time course diagram, Poincaré map and power spectrum of the system, the dynamic characteristics of the gear transmission system with different backlash under gear damping ratio changing, and the influence of the random disturbance of gear damping ratio on the bifurcation characteristic of system are analyzed. Numerical simulation shows that the gear transmission system will be from periodic motion with a noisy disturbance to chaotic-like motion by period-doubling bifurcation with decreasing gear damping ratio. In the small damping ratio range, the backlash has great effect on the motion characteristics. Random disturbance has an important effect on the bifurcation characteristics.


Sign in / Sign up

Export Citation Format

Share Document