Scaling law of gear transmission system obtained from dynamic equation and finite element method

2021 ◽  
Vol 159 ◽  
pp. 104285
Author(s):  
Chunpeng Zhang ◽  
Jing Wei ◽  
Shaoshuai Hou ◽  
Jiaxiong Zhang
Author(s):  
Chao Liu ◽  
Zong-de Fang ◽  
Xuan Liu ◽  
Sheng-yang Hu

Considering flexibility of the support shafts as well as bearing supports, the effect of meshing impact force and meshing stiffness on the dynamic behavior of a gear transmission system in electric vehicle is investigated in this paper using the proposed hybrid user-defined element method. First, a structured grid generation method is introduced to establish accurate mesh models of the pinion and gear teeth. Second, coupling the tooth mesh models and the flexible shafts as well as bearings, two finite element models are, respectively, constructed for the two helical gear pairs of the electric vehicle reduction unit to calculate the meshing impact force. Next, the basic mechanism of meshing impact is explained in detail according to the finite element results, and the impact force is determined as one of the main internal excitations substituted into the dynamic model established by the hybrid user-defined element method. Under 50 N m input torque and 12,010 r/min rotational speed of the input shaft, the simulation results by the hybrid user-defined element method indicate that the example system reaches a steady state and the vibrations primarily occur at the meshing frequencies. With an increment of 600 r/min of the input rotational speed, it is also concluded from the results that (1) the calculated impact force approximately presents linear growth with the increase of the input shaft rotational speed and (2) the root mean square values of the vibration acceleration generally grow with the increase of the speed.


Author(s):  
Yanzhong Wang ◽  
Kai Yang ◽  
Wen Tang

Abstract A comparative analysis of the structural form and gear type of the gear-driven fan engine reducer is made. Comparative analysis of different transmission structure forms and different gear types, the results show that the star-shaped structure with herringbone gear is more suitable for aero-engine fan reducer, especially in the case of high output speed and high gear bearing capacity. According to the design conditions, the basic parameters of the gear system of the transmission system were preliminarily designed. The gear loading calculations were carried out by finite element method and ISO method respectively, and the root bending stress and tooth surface contact stress obtained by the two methods were compared and analyzed. The results show that the parameters of the fan reducer gear system designed using ISO standards are more conservative. The gear stress obtained by the finite element method simulation is close to the nominal stress calculated in the ISO standard, which verifies the rationality of the finite element model. On this basis, the gear shaping parameters are designed according to the stress and strain conditions of the finite element loading contact analysis, and the appropriate shaping parameters are obtained. Based on the stress and strain results of the finite element loading contact analysis, we designed the gear modification parameters and obtained the appropriate modification parameters.


2016 ◽  
Vol 50 (6) ◽  
pp. 205-213
Author(s):  
Won-Bin Kang ◽  
Hyun-Woo Kim ◽  
JinHyun Kim ◽  
Hyun-Joon Kim

2020 ◽  
Vol 24 (3 Part A) ◽  
pp. 1513-1520
Author(s):  
Bing Zhang ◽  
Jian-Guo Gao ◽  
Gui-Long Min ◽  
Shoushuo Liu

At present, there are some problems in the reliability analysis method for gear transmission system of aeronautical turbine starter, such as low accuracy of finite element model, low efficiency of analysis and low accuracy of analysis results. To this end, a reliability analysis method for the gear transmission system of aeronautical turbine starter under multi-constraint is presented. A 3-D model of the gear pair of aeronautical turbine starter is constructed in UG. The model is input into the finite element software for meshing. The gear transmission of aeronautical turbine starter under working conditions is simulated by defining boundary conditions and applying loads, which provides a basis for reliability analysis of gear transmission system of aeronautical turbine starter. The reliability of the gear transmission system of the aeronautical turbine starter is evaluated by the comprehensive evaluation method, and the reliability of the system is evaluated by the contact of the evaluation results. According to the evaluation results, the reliability analysis of the gear transmission system of the aeronautical turbine starter is realized under the condition of multi-constraint. The experimental results show that the proposed method has high analysis efficiency and high analysis accuracy.


Sign in / Sign up

Export Citation Format

Share Document